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Cross-Entropy Loss

I The Cross-Entropy loss from predicting y with π
is:

l(π; y) = −
K∑
k=1

yk log πk (1)

I It is equivalent to the (log) Categorical
distribution:

p(y; π) =

K∏
k=1

πykk (2)

I y lives in the discrete sample space of 1-hot
vectors:

y ∈ Ω1-hot =
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1


 (3)

I What about y ∈ ∆K (i.e. “soft labels”)?

∆K =

π ∈ RK
+ :

K∑
k=1

πk = 1

 (4)

The Continuous-Categorical

I y ∈ ∆K follows a Continuous-Categorical (CC)
distribution with parameter λ ∈ ∆K if:

y ∼ CC(λ) ⇐⇒ p(y;λ) = C(λ) ·
K∏
k=1

λykk (5)

I C(λ) is just a normalizing constant:

C(λ) =

(−1)K+1
K∑
k=1

λk∏
i 6=k log λi

λk

−1

(6)

I The Continuous-Categorical log-likelihood
defines a probabilistic loss function for y ∈ ∆K.

I Intuitively: a probabilistic version of the
cross-entropy loss for simplex-valued data.

I Likelihood (5) can be optimized with auto-diff
using the closed form expression (6).

Experiments: Label Smoothing

I Suppose we have a K-class classifier:

fθ : x 7→ y

I Label Smoothing (LS):

yLS = (1− ε)y + (ε/K)u

I Note the change in sample space:

y ∈ Ω1-hot 7→ yLS ∈ ∆K

Continuous-Categorical Label Smoothing (CC-LS)

I We replace the LS objective:

min
θ
LLS(θ) = −

∑
(x,y)

∑
k

yLS

k · log[fθ(x)]k (7)

I ... with the CC log-likelihood:

min
θ
LCC-LS(θ) = −

∑
(x,y)

{
logC(fθ(x)) +

∑
k

yLS

k · log[fθ(x)]k

}
I CC-LS regularizes more strongly than LS:

Table: Out-of-sample accuracy on CIFAR-10 (Alexnet)

Dropout BatchNorm w/o LS with LS CC-LS (ours)
No No 86.8 (±0.1) 87.0 (±0.2) 87.6 (±0.2)
Yes No 87.0 (±0.2) 87.0 (±0.1) 87.6 (±0.2)
No Yes 89.6 (±0.1) 89.2 (±0.1) 89.2 (±0.2)
Yes Yes 89.5 (±0.1) 89.1 (±0.2) 89.0 (±0.2)

I CC-LS learns richer hidden representations than LS:
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Experiments: Actor-Mimic Reinforcement Learning

I Idea: train “Actor-Mimic Network” (AMN) to perform in
multiple tasks by “imitating” pre-trained experts.

I For each state s, derive an “expert guidance” vector y ∈ ∆K

I Train πAM
θ : s 7→ a, to optimize:

min
θ
LAMN(θ) = −

∑
s,y

∑
k

yk · log πθ (ak|s) (8)

I Again, y ∈ ∆K; targets are not one-hot but simplex-valued.

Continuous-Categorical Actor-Mimic Network (CC-AMN)

I We replace the AMN objective:

min
θ
LAMN(θ) = −

∑
s,y

∑
k

yk · log πθ (ak|s) (9)

I ... with the CC log-likelihood:

min
θ
LCC-AMN(θ) = −

∑
s,y

{
logC (πθ (s)) + (10)

+
∑
k

yk · log πθ (ak|s)
}

I CC-AMN underperforms AMN due to numerically instabilities
in the optimization landscape:

Table: Mean evaluation score (and standard deviation)

Model Breakout Atlantis Pong SpaceInv.
DQN 331 (±44) 32.8 (±14.4) 20.9 (±0.2) 442 (±119)
AMN 337 (±74) 31.6 (±9.1) 20.9 (±0.1) 415 (±126)

CC-AMN 320 (±66) 26.2 (±10.4) 8.8 (±11.9) 415 (±132)

Conclusions

I The Continuous-Categorical enables a probabilistic alternative
to the Cross-Entropy loss.

I Theoretically appealing but presents unresolved computational
challenges in high dimensions.

I Works well in classification with label-smoothing, but poorly in
actor-mimic RL.
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