,

Uses and Abuses of the Cross-Entropy Loss: Case Studies in Modern Deep Learning Elliott Gordon-Rodriguez, Gabriel Loaiza-Ganem, Geoff Pleiss, and John Cunningham

 \blacktriangleright The Cross-Entropy loss from predicting y with π is:

$$
[f_\theta(x)]_k
$$

$$
(7)
$$

$$
\left\{y_k^{\text{\tiny{LS}}}\cdot\log[f_\theta(x)]_k\right\}
$$

 \blacktriangleright It is equivalent to the (log) Categorical distribution:

1) **87.6**
$$
(\pm 0.2)
$$

1) **89.2** (± 0.2)

$$
2) \ 89.0 \ (\pm 0.2)
$$

,

Cross-Entropy Loss

 \blacktriangleright y lives in the discrete sample space of 1-hot vectors:

$$
l(\pi; y) = -\sum_{k=1}^K y_k \log \pi_k
$$

$$
p(y; \pi) = \prod_{k=1}^{K} \pi_k^{y_k}
$$

$$
y \in \Omega_{1\text{-hot}} = \left\{ \begin{pmatrix} 1 \\ 0 \\ \vdots \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \\ \vdots \\ 0 \end{pmatrix}, \dots, \begin{pmatrix} 0 \\ 0 \\ \vdots \\ 1 \end{pmatrix} \right\}
$$

\n
$$
\text{What about } y \in \Delta^K \text{ (i.e. "soft labels")?}
$$

\n
$$
\Delta^K = \left\{ \pi \in \mathbb{R}_+^K : \sum K \pi_k = 1 \right\}
$$

 $k=1$

 \int

- **IN The Continuous-Categorical log-likelihood** defines a probabilistic loss function for $y \in \Delta^K$.
- \blacktriangleright Intuitively: a probabilistic version of the cross-entropy loss for simplex-valued data.
- \blacktriangleright Likelihood (5) can be optimized with auto-diff using the closed form expression [\(6\)](#page-0-1).

The Continuous-Categorical

 $\overline{\mathcal{L}}$

 $I \blacktriangleright y \in \Delta^K$ follows a Continuous-Categorical (CC) distribution with parameter $\lambda \in \Delta^K$ if:

$$
y \sim CC(\lambda) \iff p(y; \lambda) = C(\lambda) \cdot \prod_{k=1}^K \lambda_k^{y_k}
$$

 \blacktriangleright $C(\lambda)$ is just a normalizing constant:

$$
C(\lambda) = \left((-1)^{K+1} \sum_{k=1}^{K} \frac{\lambda_k}{\prod_{i \neq k} \log \frac{\lambda_i}{\lambda_k}} \right)^{-1}
$$

Continuous-Categorical Actor-Mimic Network (CC-AMN) \blacktriangleright We replace the AMN objective: min θ $\mathcal{L}^{\mathsf{AMN}}(\theta) = -$ X X s,y k_k $y_k \cdot \log \pi_\theta (a_k|s)$ (9) \blacktriangleright ... with the CC log-likelihood: min θ $\mathcal{L}^{\mathsf{CC-AMN}}(\theta) = \sum$ s,y $\log C \left(\pi_{\theta} \left(s \right) \right)$ + (10) $\begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array} \end{array} \end{array} \end{array} \end{array}$ \sum \mathcal{k} $y_k \cdot \log \pi_{\theta}\left(a_k | s\right)$ \int

▶ CC-AMN underperforms AMN due to numerically instabilities in the optimization landscape:

Experiments: Actor-Mimic Reinforcement Learning

I Idea: train "Actor-Mimic Network" (AMN) to perform in multiple tasks by "imitating" pre-trained experts. \blacktriangleright For each state s, derive an "expert guidance" vector $y \in \Delta^K$ \blacktriangleright Train π^{AM}_{θ} θ : $s \mapsto a$, to optimize: min θ $\mathcal{L}^{\mathsf{AMN}}(\theta) = \sum$ \sum

$$
-\sum_{s,y}\sum_{k}y_{k}\cdot\log\pi_{\theta}(a_{k}|s)
$$
 (8)

Again, $y \in \Delta^K$; targets are not one-hot but simplex-valued.

• The Continuous-Categorical enables a probabilistic alternative

Independent Presents unresolved computational

 \blacktriangleright Works well in classification with label-smoothing, but poorly in

Conclusions

- to the Cross-Entropy loss.
- challenges in high dimensions.
- actor-mimic RL.

Acknowledgements

We thank Andres Potapczynski and the anonymous reviewers for helpful conversations, and the Simons Foundation, Sloan Foundation, McKnight Endowment Fund, NSF 1707398, and the Gatsby Charitable Foundation for support.

Le COLUMBIA UNIVERSITY IN THE CITY OF NEW YORK

layer 6

<https://arxiv.org/abs/2011.05231> May 14, 2021 eg2912@columbia.edu