

• $E_{\eta}(T_j) = \frac{\partial}{\partial \eta_j} A(\eta)$ • $Cov_{\eta}(T_j, T_k) = \frac{\partial^2}{\partial n_i \partial \eta}$ $\frac{\partial^2}{\partial \eta_j \partial \eta_k} A(\eta)$. If $p_{\theta}(x) = \exp\left\{\sum_{i=1}^{k} \eta_i(\theta) T_i(x) - B(\theta)\right\} h(x), \eta(\theta_0) \in \overline{\eta},$ • If $k = 1$, then $E_{\theta_0}(T(X)) = B'(\theta_0)/\eta'(\theta_0)$ and $Var(T(X)) = \frac{B''(\theta)}{\eta'(\theta)^2} - \frac{\eta''(\theta)B'(\theta)}{\eta'(\theta)^3}.$ • If $k > 1$, then $E_{\theta}(T(X)) = J^{-1} \nabla B$, where $J = \{\frac{\partial \eta_j}{\partial \theta_k}$ $\frac{\partial \eta_j}{\partial \theta_i}\}_{ij}$ and $\nabla B = {\partial \over \partial \theta_i} B(\theta) \}_i$. **Propn (regularity of the estimator).** Let $\delta(X)$ be an estimator s.t. $Var(\delta(X)) < \infty$. Then $\partial_{\theta} \int \delta(x) p_{\theta}(x) d\mu =$ $\int \delta(X) \partial_{\theta} p_{\theta}(x) d\mu$, at any $\theta_0 \in (\Omega)^0$, provided $\exists b(x)$ s.t. $\frac{P_{\theta_0+h}(x)-p_{\theta_0}(x)}{h p_{\theta_0}(x)}$ $\frac{h(x)-p_{\theta_0}(x)}{h p_{\theta_0}(x)} \leq b(x)$ for all sufficiently small h, and $\int b(x)|\delta(x)|p_{\theta}(x)d\mu < \infty$ (in particular, this will hold if $\mathbb{E}_{\theta_0}[b(X)^2] < \infty$, by Cauchy-Schwarz). Propn (regularity of estimator in exp. fam.). Let $p_{\theta}(x) = e^{\eta(\theta)t(x) - B(\theta)}h(x)$ and $\eta \in \mathcal{C}^{\infty}$ (so that $B \in C^{\infty}$). If $\delta(X)$ is an estimator with $\text{Var}(\delta(X)) < \infty$, then $\partial_{\theta} \int \delta(x) p_{\theta}(x) d\mu = \int \delta(x) \partial_{\theta} p_{\theta}(x) d\mu.$ Thm (Multi-parameter CRLB). Suppose (a) $\Theta \subseteq \mathbb{R}^k$ is an open set. (b) $\{p_{\theta}(x), \theta \in \Theta\}$ have common support. (c) $\partial_{\theta_i} p_{\theta}(x)$ exists, $\forall i, x, \theta$, and is finite. (d) $\partial_{\theta_i} \int_{\mathcal{X}} p_{\theta}(x) d\mu = \int_{\mathcal{X}} \partial_{\theta_i} p_{\theta}(x) d\mu.$ (e) $\partial_{\theta_i} \int_{\mathcal{X}} \delta(x) p_{\theta}(x) d\mu = \int_{\mathcal{X}} \delta(x) \partial_{\theta_i} p_{\theta}(x) d\mu.$ (f) $I(\theta)$ is finite and +ve definite. Then we have $Var(\delta(X)) \geq \alpha^T I(\theta)^{-1} \alpha$, where $\alpha_i =$ $\partial_{\theta_i} \mathbb{E}_{\theta} \delta(X)$. In particular, if $\delta(X)$ is unbiased for $g(\theta)$, $\alpha_i = \partial_{\theta_i} g(\theta).$ AVERAGE RISK OPTIMALITY **Setup.** Suppose $\{P_{\theta}, \theta \in \Theta\}$ is a collection of probability measures on X dominated by a σ -finite measure μ . Assume now that θ is a random variable on Θ , with prior distn. π . Suppose we want to estimate $g(\theta)$. The risk function is still $R(g(\theta), \delta) = \mathbb{E}_{X \sim P_{\theta}} L(g(\theta), \delta(X)) =$ $\mathbb{E}[L(g(\theta), \delta(X))|\theta].$ **Def** (Bayes risk) of δ : $r(\pi, \delta) = \mathbb{E}_{\theta \sim \pi}[R(g(\theta), \delta)]$ Def (Bayes estimator). δ_0 is a Bayes estimator if $r(\pi, \delta_0) \leq r(\pi, \delta)$ for any other estimator δ . Def (Bayes risk of a Prior). $r(\pi) = \inf_{\delta} (r(\pi, \delta)).$ **Remark.** The joint distribution of (X, θ) is $p_{\theta}(x)\pi(\theta)$. The marginal distribution of X is $m(x) = \int_{\Theta} p_{\theta}(x) \pi(d\theta)$. The posterior distn. is $\pi(\theta|x) = p_{\theta}(x)\pi(\theta)/m(x) \propto$ $p_{\theta}(x)\pi(\theta).$ Thm (Bayes estimator for sq. err. loss). If $L(g(\theta), \delta(X)) = (g(\theta) - \delta(X))^2$, and $\mathbb{E}[g(\theta)^2] < \infty$, (i) $\delta_0 = \mathbb{E}[q(\theta)|X]$ is a Bayes estimator with Bayes risk $\mathbb{E}[\text{Var}(q(\theta)|X)].$ (ii) If $\delta(X)$ is any other Bayes estimator, then $\delta_0(X)$ = $\delta(X)$ a.s. under the joint distn. of (X, θ) . **Remark.** (ii) also implies $\delta_0(X) = \delta(X)$ a.s. under the marginal of X. If the marginal dominates the conditional, this will further imply that $\delta_0(X) = \delta(X)$ a.s. $P_\theta, \forall \theta \in \Theta$, i.e. we have uniqueness under the conditionals. Lemma (Bias of Bayes estimator). Under squared error loss, a Bayes estimator cannot be unbiased, unless $\delta(X) = q(\theta)$ a.s. Def (Conjugate Prior). A non-trivial class of probability distributions F is called a conjugate family of priors for a model $\{P_{\theta} : \theta \in \Theta\}$ if the posterior distribution $\pi(\theta|x)$ also belongs to F. **Example.** For $p_{\theta}(x) = \exp\left\{\sum_{i=1}^{k} \eta_i(\theta) T_i(x)\right\}$ $B(\theta)$ }h(x), the conjugate family is $\pi(\theta)$ = $\exp{\{\sum_{i=1}^{k} s_i \eta_i(\theta) - s_0 B(\theta)\}\psi(s_0, ..., s_k)}$ Def (least favourable). A prior π is least favourable if, for all other distributions π' on Θ , $r(\pi) \geq r(\pi')$. A sequence of priors $\{\pi_n\}_{n>1}$ is least favourable if $\lim_{n\to\infty} r(\pi_n) = \sup_{\pi} r(\pi).$ Thm (minimax from Bayes). Suppose π is a distribution on Θ with Bayes estimator δ_{π} , s.t. $r(\pi) = r(\pi, \delta_{\pi}) =$ $\sup_{\theta \in \Theta} R(g(\theta), \delta_{\pi})$. Then: (a) δ_{π} is minimax (b) If δ_{π} is the unique (w.r.t. the conditionals) Bayes estimate w.r.t. π , then δ_{π} is unique minimax. (c) π is least favourable. Corollary. A Bayes estimator with constant risk is minimax. **Thm (minimax from L.F.).** Suppose ${\lbrace \pi_n \rbrace_{n>1}}$ is a sequence of priors s.t. $\lim_{n\to\infty} r(\pi_n) = \sup_{\theta \in \Theta} R(g(\theta), \delta_0)$ for some estimate δ_0 . Then: (a) δ_0 is minimax. (b) $\{\pi_n\}_{n>1}$ is least favourable. **Lemma (minimax on subset).** Suppose $\delta(X)$ is minimax for $g(\theta)$ on the parameter set $\Theta_0 \subseteq \Theta$. If $\sup_{\theta \in \Theta_0} R(g(\theta), \delta) = \sup_{\theta \in \Theta} R(g(\theta), \delta)$, then δ is minimax for $\theta \in \Theta$. Def (Admissible). An estimator δ is *inadmissible* if

 $\exists \delta'$ s.t. $R(g(\theta), \delta') \leq R(g(\theta, \delta))$, with strict inequality for some $\theta \in \Theta$. Otherwise, δ is *admissible*.

Remark. If the loss is strictly convex, any estimator which is not a function of the M.S. statistic is inadmissible (Rao-Blackwell).

Lemma. If the loss is strictly convex, δ is admissible and $R(g(\theta), \delta) = R(g(\theta), \delta'), \forall \theta \in \Theta$, then $\delta = \delta'$ a.s. $P_{\theta}, \forall \theta \in \Theta.$

Lemma. Any unique (w.r.t. the conditionals) Bayes estimator is admissible.

Lemma. An admissible estimator with constant risk is minimax. If the loss function is strictly convex, it is also unique minimax.

Lemma. If δ is unique minimax, then δ is admissible.

Thm (Karlin). Suppose $\{P_{\theta}, \theta \in \Theta\}$ is a oneparameter exponential family $p_{\theta}(x) = e^{\theta T(x) - B(\theta)} h(x)$, for $\theta \in (a, b)$ (possibly unbounded). Let $\delta_{\lambda,\nu}(X) =$ $\frac{1}{1+\lambda}T(X) + \frac{\nu\lambda}{1+\lambda}, \lambda \geq 0, \nu \in \mathbb{R}.$ If $\exists \theta_0 \in \Theta$ s.t. $\int_a^{\theta_0} e^{-\nu \lambda \theta + \lambda B(\theta)} d\theta = \int_{\theta_0}^b e^{-\nu \lambda \theta + \lambda B(\theta)} d\theta = \infty$, then $\delta(X)$ is admissible for estimating $q(\theta) = \mathbb{E}_{\theta} T(X)$, w.r.t squared error loss.

Corollary If $(a, b) = (-\infty, \infty)$, then T is admissible for $E_{\theta}T$.

Def (improper prior). A measure π on the parameter space Θ s.t. $\pi(\Theta) = \infty$.

If $m(x) := \int_{\Theta} p_{\theta}(x) \pi(d\theta) < \infty, \forall x \in \mathcal{X}$, we can define a probability measure $\pi(\cdot|x)$ on Θ by $\pi(A|x)$ = $\int_A p_\theta(x) \pi(d\theta)/m(x)$.

Def (generalized Bayes estimate). A minimizer of $\int_{\Theta \times \mathcal{X}} L(g(\theta), \delta(x)) p_{\theta}(x) \pi(d\theta) d\mu$, where π is an improper prior.

Thm (generalized Bayes estimate). If $m(x) < \infty, \forall x$, a generalized Bayes estimate, w.r.t squared error, is the posterior mean $\int_{\Theta} g(\theta) \pi(\mathrm{d}\theta | x)$, provided $\int_{\Theta} g(\theta)^2 \pi(\mathrm{d}\theta)$ < ∞.

Remark (Jeffrey's Prior). One common "vague"/improper prior is $\pi(\theta) \propto \sqrt{I(\theta)}$. In the multiparameter case, $\pi(\theta) \propto \sqrt{\det(I(\theta))}$

Def (hierarchical Bayes). The prior distribution on the parameter θ has a *hyper-parameter*, λ , which itself has a hyper-prior. We have, $X|\theta \sim p_{\theta}(x), \theta|\lambda \sim \pi_{\lambda}(\theta),$ $\lambda \sim \psi(\lambda)$.

we want

(i) Then $P_{\theta}(\hat{p}(X) \leq u) \leq u, \forall u \in (0,1), \theta \in \Theta_0$ (ii) If $\exists \theta_0 \in \Theta_0$ such that $P_{\theta_0}(X \in S_\alpha) = \alpha, \forall \alpha$ then $P_{\theta_0}(\hat{p}(X) \leq u) = u.$ Def (Confidence Interval). Let $X \sim P_{\theta}$ for some $\theta \in \Theta$. For every $x \in \mathcal{X}$, let $\mathcal{S}(x)$ be a subset of Θ . We say the collection of sets $\{\mathcal{S}(x), x \in \mathcal{X}\}\)$ is a $(1-\alpha)$ confidence region if $P_{\theta}(\theta \in \mathcal{S}(X)) \geq 1 - \alpha$, $\forall \theta \in \Theta$. Assume $\Theta \subseteq \mathbb{R}$. If $\mathcal{S}(x) = [l(x), \infty)$, then we call it a lower confidence interval. If $\mathcal{S}(x) = (-\infty, u(x))$, an upper CI. If $\mathcal{S}(x) = [l(x), u(x)]$, a 2-sided CI. **Remark.** Suppose for every $\theta_0 \in \Theta$, ϕ_{θ_0} is a nonrandomized level α test for H_0 : $\theta = \theta_0$ vs H_1 . Let $\mathcal{S}(x) = \{\theta : \phi_{\theta}(X) = 0\}$. Then $\{\mathcal{S}(x) : x \in \mathcal{X}\}\$ is a $(1 - \alpha)$ confidence region. Remark (Asymptotic CI). In practice, suppose $\sqrt{n}(\hat{\theta} - \theta) \stackrel{d}{\rightarrow} N(0, V^2(\theta))$ where V is continuous. Then, by Slutsky's (and cts. mapping thm), $\sqrt{n} \frac{\hat{\theta} - \theta}{V(\hat{\theta})}$ $\overline{V(\hat{\theta})}$ $\stackrel{d}{\rightarrow} N(0,1),$ and therefore, $(\hat{\theta} - \frac{1}{\sqrt{n}} z_{1-\alpha/2} V(\hat{\theta}), \hat{\theta} + \frac{1}{\sqrt{n}} z_{1-\alpha/2} V(\hat{\theta}))$ is a $1 - \alpha$ C.I. for θ . Def (Unbiased Test). Suppose we want to test H_0 : $\theta \in \Theta_0$ vs H_1 : $\theta \in \Theta_1$ at level α . We say a test ϕ is level α unbiased if (i) $\sup_{\theta \in \Theta_0} E_{\theta} \phi \leq \alpha$ (ii) $\inf_{\theta \in \Theta_1} E_{\theta} \phi \geq \alpha$ **Def** (UMPU). We say ϕ is Uniformly Most Powerful Unbiased at level α , if ϕ is unbiased at level α and for any other unbiased test ψ , $E_{\theta} \phi \ge E_{\theta} \psi$, $\forall \theta \in \Theta_1$. **Remark.** If ϕ is UMP, it is also UMPU. **Lemma (UMPU).** Suppose $\{p_{\theta}, \theta \in \Theta\}$ is a collection of prob. measures, s.t. $\theta \mapsto E_{\theta} \phi$ is continuous in θ (metric on Θ implicit). If ϕ_0 is a test such that: (i) ϕ_0 is UMP among the class of tests satisfying $E_{\theta} \phi = \alpha, \forall \theta \in \partial \Theta_0 \cap \partial \Theta_1$. ($\partial S =$ boundary of S). (ii) ϕ_0 is level α for $\theta \in \Theta_0$. Then ϕ_0 is UMPU for $\theta \in \Theta_0$ vs $\theta \in \Theta_1$ at level α . **Theorem.** Let $X \sim p_{\theta}(x) = e^{\eta(\theta)T(x)-A(\theta)}h(x)$, η strictly increasing and continuous, and Θ an open interval. For the test $H_0 : \theta \in [\theta_1, \theta_2]$ vs $H_1 : \theta \notin [\theta_1, \theta_2]$, there exists a UMPU level α test ϕ given by: $\phi = 1$ if $T(X) \notin [c_1, c_2]$ $= \nu_i$ if $T(X) = c_i$ $= 0$ otherwise. and $E_{\theta_1} \phi = E_{\theta_2} \phi = \alpha$. **Theorem.** $X \sim p_{\theta}(x) = e^{\eta(\theta)T(x)-A(\theta)}h(x)$, Θ is an open interval, $\eta \in C^1$ and $\eta'(\theta) > 0$. We want to test H_0 : $\theta = \theta_0$ vs H_1 : $\theta \neq \theta_0$ at level α . There exists a UMPU of the form: $\phi = 1$ if $T(X) \notin [c_1, c_2]$ $= \nu_i$ if $T(X) = c_i$ $= 0$ if $T(X) \in (c_1, c_2),$ where $E_{\theta_0} \phi = \alpha$ and $E_{\theta_0} \{\phi(X)T(X)\} = \alpha E_{\theta_0} \{T(X)\}.$ Lemma. Let $M = \{ (E_{\theta_0}[\phi], E_{\theta_0}[\phi] \}, \phi \text{ is a test fin} \} \subseteq$ \mathbb{R}^2 . Then for any $\alpha \in (0,1)$, $(\alpha, \alpha E_{\theta_0} T)$ is an interior point of M. (consider $\phi = \alpha \pm \varepsilon I(T > E_{\theta_0}T)$) (hw3 q3) Lemma. Suppose ϕ is a test of the form $\phi = 1$ if $T(x) > c$ $= \nu$ if $T(x) = c$ $= 0$ if $T(x) < c$ Then $E_{\theta_0} \phi = \alpha$ and $E_{\theta_0} \phi T = \alpha E_{\theta_0} T$ cannot hold simultaneously. (consider $(\phi - \alpha)(T - c) \geq 0$) Lemma. There is at most one test of the form: $\phi = 1$ if $T \notin [c_1, c_2]$ $= 0$ if $T \in (c_1, c_2)$ $= \nu_i$ if $T = c_i$ such that $E_{\theta_0} \phi = \alpha$, $E_{\theta_0} \phi T = \alpha E_{\theta_0} T$. (HW3 Q4) **Theorem.** Suppose $X \sim p_{\theta,n}(x) =$ $e^{\theta U(x)+\sum_{i=1}^K \eta_i T_i(x)-A(\theta,\eta)}h(x)$ where $(\theta,\eta) \in \Theta \times \Omega$ is open. Suppose we want to test H_0 : $\theta \le \theta_0$ vs $H_1 : \theta > \theta_0$ at level α . In this case, there exists a UMPU of the form $\phi = 1$ if $U > K(\mathbf{T})$ $= \nu(\mathbf{T})$ if $U = K(\mathbf{T})$ $= 0$ if $U < K(\mathbf{T})$ where $E_{\theta_0,\eta}(\phi(U,\mathbf{T})|\mathbf{T}) = \alpha$ a.s. Remark. The conditional distribution of U given $T = t$ is an exponential family of the form $\tilde{p}(u|t)$ $e^{\theta u - A_t(\theta)} h_t(u), \theta \in \Theta.$ Remark. Similarly, you can find UMPU in the exponential family $p_{\theta,\eta}(x) = \exp\{\theta U(x) + \sum_{i=1}^{k} \eta_i T_i(x) A(\theta, \eta)$ } $h(x)$ for these problems: (ii) H_0 : $\theta \notin (\theta_1, \theta_2)$ vs H_1 : $\theta \in (\theta_1, \theta_2)$. (iii) $H_0: \theta \in [\theta_1, \theta_2]$ vs $H_1: \theta \notin [\theta_1, \theta_2]$. $(\text{take } \mathcal{C} = \{\psi : E_{\theta_1,n}(\psi|T) = \alpha \text{ a.s.}, E_{\theta_2,n}(\psi|T) = \alpha \text{ a.s.}\}\)$ (iv) $H_0: \theta = \theta_0$ vs $H_1: \theta \neq \theta_0$ (take $\mathcal{C} = \{ \psi : E_{\theta_0, \eta}(\psi|T) = \alpha \text{ a.s.}, E_{\theta_0, \eta}(\psi U|T) =$ $\alpha E_{\theta_0}(\psi|T)$ a.s.}) **Def (LRT).** Suppose X_1, \dots, X_n are iid from $p_\theta(\cdot)$, and you want to test $H_0: \theta \in \Theta_0$ vs $H_1: \theta \in \Theta_1$. The LRT statistic is $\Lambda(X_1, \dots, X_n) = \frac{\sup_{\theta \in \Theta_0} p_{\theta}(X_1, \dots, X_n)}{\sup_{\theta \in \Theta_0} p_{\theta}(X_1, \dots, X_n)}$ $\frac{\sup_{\theta \in \Theta_0} p_{\theta}(X_1, \cdots, X_n)}{\sup_{\theta \in \Theta_0 \cup \Theta_1} p_{\theta}(X_1, \cdots, X_n)}$.

Remark. In many examples $-2 \log \Lambda(X_1, \dots, X_n)$ has an asymptotic χ^2 distribution with dim($\Theta_0 \cup \Theta_1$) – $\dim(\Theta_0)$ degrees of freedom.

Thm (Wilks). Suppose A0-A4 hold, MLE is consistent, $\Theta \subseteq \mathbb{R}^k$ open. Suppose we want to test $H_0: \theta = \theta_0$ vs $H_1: \theta \neq \theta_0$. Then $-2\log \Lambda(X_1, \dots, X_n) \stackrel{d}{\rightarrow} \chi_k^2$.

Wald's Test. H_0 : $\theta = \theta_0$ vs H_1 : $\theta \neq \theta_0$, A0-A4 and MLE consistent. Thus, $\sqrt{n}(\hat{\theta}_n - \theta_0) \stackrel{d}{\rightarrow} N(0, I(\theta_0)^{-1})$ under H₀. Reject H₀ if $|\hat{\theta}_n - \theta_0| > \frac{z_{1-\alpha/2}}{\sqrt{nL_0}}$ $\frac{1-\alpha/2}{nI(\theta_0)}$. For general k, reject if $n(\hat{\theta}_n - \theta_0)^T I(\theta_0)(\hat{\theta}_n - \theta_0) > \chi^2_{k,1-\alpha}$. Can replace $I(\hat{\theta}_0)$ by $I(\hat{\theta}_n)$ and still have this asymptotic distn.

Rao Score Test. Let $U_{\theta}(X_i) = \frac{\partial}{\partial \theta} \log p_{\theta}(X_i)$. We know $\mathbb{E}_{\theta_0} U_{\theta_0}(X_i) = 0$, $Var_{\theta_0} U_{\theta_0}(X_i) = I(\theta_0)$, so $\frac{1}{\sqrt{n}}\sum U_{\theta_0}(X_i) \frac{d}{\theta_0} N(0,I(\theta_0)).$ So reject $H_0: \theta = \theta_0$ if $\left|\frac{1}{\sqrt{n}}\sum U_{\theta_0}(X_i)\right|>\frac{z_{1-\alpha/2}}{\sqrt{I(\theta_0)}}$ $\frac{-\alpha/2}{I(\theta_0)}$.

M-ESTIMATION

Setup. $X_1, \dots, X_n \stackrel{iid}{\sim} P$ on $(\mathcal{X}, \mathcal{A})$. Family of *criterion* functions $m_{\theta}(x), m_{\theta}: \mathcal{X} \to \mathbb{R}, \theta \in \Theta$ (e.g. $-L(\theta, X)$).

Def (**M-estimator**). $\hat{\theta}_n = \arg \max_{\theta \in \Theta} \frac{1}{n} \sum m_{\theta}(x_i)$. • e.g. mean minimizes $\frac{1}{n} \sum_{i=1}^{n} (X_i - \theta)^2$ • e.g. median minimizes $\frac{n}{n} \sum_{i=1}^{n} |X_i - \theta|$

Def (**Z-estimator**). $\hat{\theta}_n$ such that $\sum M_{\theta}(x_i) = 0$. • e.g. MLE often solves $\sum_{i=1}^{n} \nabla_{\theta} \log p_{\theta}(X_i) = 0$

Setup. $K \subseteq \mathbb{R}^p$ compact. $\mathcal{C}(K)$ is the space of continuous functions $K \to \mathbb{R}$. $\mathcal{C}(K)$ is a Banach space with norm $||w||_{\infty} = \sup_{t \in K} |w(t)|$, and it is separable (has a countable dense subset) W_1, W_2, \cdots are iid random functions on $\mathcal{C}(K)$ (e.g. $W_i(t) = m_t(X_i)$).

Thm. Suppose W is a random function in $\mathcal{C}(K)$, K compact. Let $\mu(t) = \mathbb{E}W(t), t \in K$. If $\mathbb{E}||W||_{\infty} < \infty$, then (i) μ is continuous.

(ii) Define $M_{\varepsilon}(t) := \sup_{s:||t-s||<\varepsilon} |W(s) - W(t)|$. Then $\sup_{t\in K} \mathbb{E}M_{\varepsilon}(t) \to 0$ as $\epsilon \downarrow 0$

Thm. W_1, W_2, \cdots iid random functions in $\mathcal{C}(K)$, K compact. Let $\mu(t) = \mathbb{E}W(t), \ \overline{W}_n(\cdot) = \frac{1}{n} \sum W_i(\cdot)$. If $\mathbb{E}||W||_{\infty} < \infty$, then $||\overline{W}_n - \mu||_{\infty} \stackrel{p}{\to} 0$ as $n \to \infty$.

Thm. ${G_n}_{n>1}$ random functions in $\mathcal{C}(K)$, K compact. Suppose $||G_n - g||_{\infty} \stackrel{p}{\rightarrow} 0$, g non-random in $\mathcal{C}(K)$. Then (i) If $\{t_n\}_{n\geq 1} \subseteq K$ are random vectors s.t. $t_n \stackrel{p}{\to} t^*(\in K)$, then $G_n(t_n) \stackrel{p}{\rightarrow} g(t^*).$

 \equiv

• If
$$
X \ge 0
$$
, then $\mathbb{E}[X] = \int_{0}^{\infty} P(X > x) dx$
\n• Suppose $X_i \sim N(\theta, \sigma^2)$:
\n $E(\sum X_i) = n\theta$
\n $E(\sum X_i^2) = n\sigma^2 + n\theta^2$
\n $E((\sum X_i)^2) = n^2\sigma^2 + n^2\theta^2$
\n $(n-1)S^2 = \sum (X_i - \overline{X})^2 \sim \sigma^2 X_{n-1}^2$
\n $\frac{\overline{X}-\mu}{\sqrt{S^2/n}} \sim t_{n-1}$
\n $E(\frac{1}{\sum X_i^2}) = \frac{1}{\sigma^2(n-2)}$
\n• MLE is $(\overline{X}, \frac{1}{n}\sum(X_i - \overline{X})^2)$
\n• Def (Sample variance). $s^2 := \frac{1}{n-1}\sum(x_i - \overline{x})^2$
\n• $\sum(x_i - \overline{x})^2 = \sum x_i^2 - n\overline{x}^2$
\n• $\sum(x_i - \mu)^2 = n(\overline{X} - \mu)^2 + \sum(X_i - \overline{X})^2$
\n• $\text{Var}(\sum_i X_i) = \sum_i \text{Var}(X_i) + 2\sum_{i < j} \text{Cov}(X_i, X_j)$
\n• $\chi_k^2 = \text{Gamma}(\lambda) = \text{Gamma}(\alpha = \frac{k}{2}, \beta = \frac{1}{2})$
\n• $\text{Exp}(\lambda) = \text{Gamma}(\alpha = 1, \beta = \lambda)$
\n• If $U \sim U(0, 1)$, then $-\log(U) = \text{Exp}(1)$
\n• If $X_i \stackrel{iid}{\sim} U(0, \theta)$, then $n(1 - \frac{X_{(n)}}{\theta}) \stackrel{d}{\rightarrow} \text{Exp}(1)$. In particular, $X(n) \stackrel{p}{\rightarrow} \theta$.
\n• If $X_i \stackrel{iid}{\sim} Bin(1, \theta/n)$, then $\sum_{i=1}^n X_i \stackrel{d}{\rightarrow} Poisson(\theta)$.
\n• If $X \sim P_0(\lambda)$ and $Y \sim P_0(\$

- $\mathbb{E}e^{\mathbf{v}^{\mathbf{t}}\mathbf{X}} = e^{\mathbf{v}^{\mathbf{t}}\mu + \frac{1}{2}\mathbf{v}^{\mathbf{t}}\mathbf{\Sigma}\mathbf{v}}.$ • In particular, in the bivariate case with correlation ρ , $f(x,y) = \frac{1}{2\pi\sigma_X\sigma_Y\sqrt{1-\rho^2}}\times$ $\exp\left(-\frac{1}{2(1-\rho^2)}\left[\left(\frac{x-\mu_x}{\sigma_x}\right)^2-2\rho\left(\frac{x-\mu_x}{\sigma_x}\right)\left(\frac{y-\mu_U}{\sigma_Y}\right)+\left(\frac{y-\mu_Y}{\sigma_Y}\right)^2\right]\right)$ • In the standardized case with correlation ρ , (i.e. $X, Y \sim$ $N(0, 1), EXY = \rho$, we have $Y = \rho X + \sqrt{1 - \rho^2}Z$, where $Z \perp X$. • If $U \sim N(0, 1)$ and $V \sim \chi_p^2$ independently, then $\frac{U}{\sqrt{2}}$ $\frac{U}{V/p} \sim t_p$ • If $U \sim \chi_p^2$ and $V \sim \chi_q^2$ independently, then $\frac{U/p}{V/q} \sim F_{p,q}$ Order Statistics. If $X_1, \cdots, X_n \stackrel{iid}{\sim} f(x)$, then • $f_{X_{(j)}}(x) = \frac{n!}{(j-1)!(n-j)!} f(x)F(x)^{j-1}(1-F(x))^{n-j}$ • $F_{X_{(j)}}(x) = \sum_{k=j}^{n} {n \choose k} F(x)^k (1 - F(x))^{n-k}$ • $f_{X_{(i)},X_{(j)}}(u,v) = \frac{n!}{(i-1)!(j-1-i)!(n-j)!} \times f(u)f(v) \times$ $F(u)^{i-1}(F(v) - F(u))^{j-1-i}(1 - F(v))^{n-j}$, for $u < v, i < j$ • $f_{X_{(1)},\dots,X_{(n)}}(\mathbf{x}) = n! f(x_1) \cdots f(x_n)$, for $x_1 < \dots < x_n$ • If $U_1, \dots, U_n \stackrel{iid}{\sim} U[0,1]$, then $U_{(k)} \sim Beta(k, n - k + 1)$ • The conditional distribution of $X_{(i)}|X_{(j)}=t$ is that of the *i*th order statistic from $j - 1$ samples of the original distribution truncated at t. • $(X_1|X_{(n)}=t) \stackrel{d}{=} \frac{1}{n}\delta_t + \frac{n-1}{n}U(0,t)$ (HW2 Q4) • Order statistics are independent of rank statistics Propn (Asymptotic distribution of ordered statistics). If $X_1, ..., X_n$ are i.i.d from continuous strictly positive density f, then, for $p \in (0,1)$, $\sqrt{n}(X_{(\lceil np \rceil)} - F^{-1}(p)) \xrightarrow{D} N\left(0, \frac{p(1-p)}{fx(F^{-1}(p))^2}\right)$ • If X_1, \dots, X_n have continuous cdf F, then $F(X_1), \cdots, F(X_n) \sim U[0, 1]$, and if $U_1, \cdots, U_n \sim U[0, 1]$, then $F^{-1}(U_1), \cdots, F^{-1}(U_n) \stackrel{d}{=} X_1, \cdots, X_n$. • If $X_1, \cdots, X_n \stackrel{iid}{\sim} N(\theta, \sigma^2)$ and $\theta \sim N(\mu, \tau^2)$, then $-\theta \vert \mathbf{X} \sim N(\frac{\mu \sigma^2 + n \tau^2 \overline{X}}{\sigma^2 + n \tau^2}, \frac{\sigma^2 \tau^2}{\sigma^2 + n \tau^2})$ $-\mathbf{X} \sim N(\mu \mathbf{1}, \sigma^2 \mathbf{I}_n + \tau^2 \mathbf{1} \mathbf{1}^T)$ (marginally) (HW3 q5) • If $X_1, \dots, X_n \sim B(1, p)$ and $p \sim B(\sqrt{n}/2, \sqrt{n}/2)$, then $\delta(X) = \frac{\sum X_i + \sqrt{n/2}}{n + \sqrt{n}}$ $\frac{\lambda_i + \sqrt{n/2}}{n + \sqrt{n}}$ is the unique Bayes estimator. It has constant risk $\frac{1}{4(1+\sqrt{n})^2}$, so it's unique minimax and L.F. • MLE for Normal, Poisson, and Bernoulli is \overline{X} . For uniform it is $X_{(n)}$.

• Cauchy Distribution verifies conditions A3 and A4.

• If X is negative binomial (r, p) , and $Y = 2pX$, then $Y \stackrel{d}{\rightarrow} \chi^2_{2r}$ as $p \rightarrow 0$.

• If $X \sim Gamma(\alpha, \beta)$ and $Y \sim Poisson(x\beta)$, then $P(X \leq x) = P(Y \geq \alpha).$

• If $X \sim Bin(m, p)$, $Y \sim Bin(n, p)$ independently, then $P(X = k|X + Y = t) = \frac{\binom{m}{k}\binom{n}{t-k}}{\binom{m+n}{t-k}}$ $\frac{\binom{k}{k} \binom{t-k}{t}}{\binom{m+n}{t}}$ (HyperGeometric)

INEQUALITIES

Triangle: $|||x|| - ||y|| \le ||x + y|| \le ||x|| + ||y||$ • $||f||_p = (\int |f|^p d\mu)^{\frac{1}{p}}$ or $||X||_p = (E|X|^p)^{\frac{1}{p}}$ are norms **Holder's:** Suppose $p, q \in [1, \infty]$ s.t. $\frac{1}{p} + \frac{1}{q} = 1$. Then $||fg||_1 \leq ||f||_q ||g||_p$. In particular, • $\int |f(x)g(x)|dx \leq (\int |f(x)|^p dx)^{\frac{1}{p}} (\int |g(x)|^q dx)^{\frac{1}{q}}$ \bullet $E|XY| \leq (E|X|^p)^{1/p} (E|Y|^q)^{1/q}$ Cauchy-Schwarz. Setting $p = q = 2$ in Holder's, Cauchy-Schwarz. Set
• $E|XY| \leq \sqrt{EX^2 EY^2}$ • $Cov(X, Y)^2 \leq Var(X)Var(Y)$, with $=$ iff $Y = aX + b$ Pinsker's: $||P - Q||_{TV} \leq \sqrt{2D_{KL}(P||Q)}$. Markov's: $P(|X| \ge M) \le \frac{E|X|}{M}$ M Jensen's: Under UNBIASEDNESS. **Cosh.** $\cosh(x) = \frac{e^x + e^{-x}}{2} \le e^{x^2/2}$ **Log.** $\log(1+x) \leq x - \frac{x^2}{2}$ $\frac{x^2}{2}$ if $x \ge 0$ (Taylor expansion) • $\log(1+x) \leq x - 2\frac{x^2}{2}$ $\frac{x^2}{2}$ if $x \ge -0.5$ • $\log(1+x) \geq x - \frac{x^2}{2} + \frac{x^3}{4}$ $\frac{c^3}{4}$ iff $x \in [0, 0.45...]$ (\leq elsewhere) • $\log(1+x) \geq x - \frac{x^2}{2} + \frac{x^3}{2}$ $\frac{c^3}{2}$ iff $x \in [-0.43, 0]$ (\leq elsewhere) MISCELLANEOUS Sterling's Approx. $n! \sim$ $\sqrt{2\pi n} \left(\frac{n}{e}\right)^n$. O notation. • $f(x) = o(g(x))$ as $x \to \infty$ iff $\frac{|f(x)|}{g(x)} \to 0$ as $x \to \infty$. • $X_n = o_p(a_n)$ if $X_n/a_n \stackrel{p}{\to} 0$. • $f(x) = O(g(x))$ as $x \to \infty$ iff $\exists x_o, M$ such that $|f(x)| < Mg(x)$ for all $x > x_0$. • $X_n = O_p(a_n)$ if X_n/a_n is stochastically bounded, i.e. $\forall \varepsilon > 0 \ \exists M, N \text{ s.t. } P(|X_n| \geq Ma_n) < \varepsilon \text{ for all } n \geq N.$ Thm (joint convergence).

• Suppose $X_n \stackrel{p}{\to} X$ and $Y_n \stackrel{p}{\to} Y$. Then $(X_n, Y_n) \stackrel{p}{\to} Y$ (X, Y) .

