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UNBIASEDNESS
Setup. Consider a set of probability measures {Pθ, θ ∈
Θ} on a sample space (X ,F), dominated by a σ0finite
measure (this assumption holds throughout, unless ex-
plicitly stated). Observe X ∼ Pθ for some θ ∈ Θ, and
infer θ. Let L(θ, δ(X)), be the loss function from esti-
mating θ with δ(X).

Def (Dominate in measure). We say P dominates Q
if P (A) = 0 =⇒ Q(A) = 0, ∀A ∈ F .

Def (Risk fn). R(θ, δ) = Eθ[L(θ, δ(X))].

Def (Unbiased). An estimator δ(X) is unbiased for
g(θ) if Eθδ(X) = g(θ), ∀θ ∈ Θ.

Def (Minimax). An estimator δ0 is minimax
for estimating g(θ) if, for all other estimaors δ,
supθ∈ΘR(g(θ), δ0) ≤ supθ∈ΘR(g(θ), δ). The minimax
risk of any estimator δ is supθ∈ΘR(g(θ), δ).

Def (Bayes Risk). Under a prior model θ ∼ π(θ),
r(π, δ) = Eθ∼π[R(θ, δ)] = E[L(θ, δ(X))].

Def (Statistic). A measurable function
T : (X ,F)→ (Rk,B).

Def (Sufficient) A statistic T is called sufficient for θ
(or for {Pθ, θ ∈ Θ}) if the conditional distribution of X|T
is independent of θ.

Thm (Neyman-Fisher Factorization Criterion).
Suppose {Pθ, θ ∈ Θ} is a collection of probability mea-
sures on (X ,F), which are dominated by a σ-finite mea-
sure γ. Let X ∼ Pθ for some θ ∈ Θ. Then T is sufficient
for θ iff pθ(x) = gθ(T (x))h(x) a.s. γ, for some gθ, h,
where pθ(·) = dPθ/dγ.

Def (Exp. Fam.) {Pθ, θ ∈ Θ} (dominated by σ-finite



measure) is said to form a k-dimensional exponential
family if the corresponding pdfs are of the form
pθ(x) = exp{

∑k
i=1 ηi(θ)Ti(x)−B(θ)}h(x),

where h, T1, · · · , Tj : X → R and B, η1, · · · , ηk : Θ→ R.

Def (Support). The support of a density is the set
where the density is strictly positive.

Thm (Pitman-Koopman-Darmois). Suppose
X1, ..., Xn are iid with density {pθ, θ ∈ Θ}, which are
continuous in x for fixed θ and supported on an inter-
val I ⊆ R. Suppose there exists a sufficient statistic
(T1, · · · , Tk) with continuous components.
(i) If k = 1, then pθ(x) = eη(θ)T (x)−B(θ)h(x).
(ii) If n > k > 1, and x 7→ pθ(x) is C1, then

pθ(x) = exp{
∑k
i=1 ηi(θ)Ti(x)−B(θ)}h(x).

Def (M.S.). Let S be sufficient for θ. S is Minimal
Sufficient if, given any other sufficient statistic T , there
exists a measurable fn. h s.t. S(x) = h(T (x)) a.s. Pθ,
∀θ ∈ Θ.

Thm (Bahadur). Let X ∼ Pθ, θ ∈ Θ be an Rn-valued
RV. Then a MS statistic exists.

Thm (M.S.). If Θ0 = {θ0, ..., θk} and pθ have common
support I ⊆ X , then

T (x) =
(
pθ1 (X)

pθ0 (X) , ...,
pθk (X)

pθ0 (X)

)
is M.S.

Thm (M.S.). Let {Pθ : θ ∈ Θ} be a collection of dom-
inated probability measures with common support, and
Θ0 ⊆ Θ. If T is sufficient for {Pθ : θ ∈ Θ}, and M.S for
{Pθ : θ ∈ Θ0}, then T is M.S for {Pθ : θ ∈ Θ}.

Thm (Lehman-Scheffe Partitions). Suppose T (x) =
T (y) iff the ratio pθ(x)/pθ(y) is independent of θ. Then
T is M.S.
Rigorous formulation: Suppose {Pθ : θ ∈ Θ} is a domi-
nated by a σ-finite measure ν. Suppose T (x) = T (y) iff
∃α, β > 0 (depending on x, y) s.t. αpθ(x) = βpθ(y), ∀θ.
Then T is M.S.

Thm (M.S. for Exp. Fam.). Let {Pθ, θ ∈ Θ} be an
exponential familhy of the form
pθ(x) = exp{

∑k
i=1 ηi(θ)Ti(x) − B(θ)}h(x), and let

η = {(η1(θ), ..., ηk(θ)) : θ ∈ Θ} ⊆ Rk.
(a) If ∃v0,v1, · · · ,vk ∈ η s.t. {v1−v0, · · · ,vk−v0} are
lin. indep., then (T1, · · · , Tk) is M.S.
(b) If (η)0 6= ∅, then (T1, · · · , Tk) is M.S.

Def (C.S.) A suff. stat. T is complete for θ if
Eθf(T ) = 0,∀θ ∈ Θ =⇒ f(T ) = 0 a.s. Pθ,∀θ.

Lemma (MGF). If EetX = EetY ,∀t ∈ (−δ, δ), then

X
D
= Y .

Thm (C.S. for Exp. Fam.). In the previous setting,
if (η)0 6= ∅, then (T1, ..., Tk) is C.S.

Thm (C.S. & M.S.). If ∃ a CS statistic T and ∃ an
MS statistic U , then T is M.S. (and U C.S.).

Def (Ancillary). A statistic S is ancillary for θ if the
distribution of S is free of θ.

Thm (Basu). If T is C.S and V is ancillary, then T and
V are independent (under Pθ,∀θ ∈ Θ).

Def. U = {U : X → R : EθU(X)2 < ∞,EθU(X) =
0,∀θ ∈ Θ}
∆ = {δ : X → R : Eθδ(X) = g(θ),Var(δ(X)) < ∞}.
Note if ∆ 6= ∅, then U + δ = ∆,∀δ ∈ ∆.

Def (UMVUE). An estimator δ0 ∈ ∆ is UMVUE if,
∀δ ∈ ∆, Varθδ0(X) ≤ Varθδ(X),∀θ ∈ Θ.

Thm. δ0 is UMVUE iff Eθδ0(X)U(X) = 0,∀U ∈ U .

Def (Convexity). C ⊆ Rk is convex if
x ∈ C, y ∈ C =⇒ αx+ (1− α)y ∈ C, ∀α ∈ (0, 1).
A function f : C → R is convex if
f(αx + (1 − α)y) ≤ αf(x) + (1 − α)f(y), ∀x, y ∈ C and
α ∈ (0, 1). Change to < for strictly convex.

Remark. If ∇φ exist, then φ is convex iff φ(y) ≥
φ(x) + (y − x)T∇φ(x),∀x 6= y (> for strictly convex).
If φ is twice differentiable, then φ is (strictly) convex if

H =
[

∂2φ
∂xi∂xj

]
i,j

exists and is +ve (semi)definite.

Thm (Jensen’s Inequality). Let φ : I → R be convex,
where I ⊆ R is an interval.
(a) If E|X| <∞, then Eφ(x) ≥ φ(EX).
(b) If φ is strictly convex, strict inequality holds above,
unless X = EX a.s.
Note this also holds for conditional expectations

Thm (Rao-Blackwell). Let T be sufficient for θ.
(a) If δ(X) is unbiased for g(θ) and a 7→ L(g(θ), a)
is convex, then η(T ) = Eθ[δ(X)|T ] is unbiased and
R(g(θ), η(T )) ≤ R(g(θ), δ(X)),∀θ ∈ Θ.
(b) If δ0 is unbiased and has finite risk ∀θ, and
a 7→ L(g(θ), a) is strictly convex, then R(g(θ), η(T )) <
R(g(θ), δ(X)),∀θ, unless δ is a function of T a.s.
Pθ,∀θ ∈ Θ.

Corollary (UMVUE) If δ(X) is an unbiased estimate
of g(θ) and T is C.S., then Eθ[δ(X)|T ] is the UMVUE.

Defn (Score func). For Θ = Rk,
S = (∂θ1 log pθ(X), · · · , ∂θk log pθ(X))T .

Defn (Fisher Info). I(θ) = Eθ(∂θ log pθ(X))2.
On Rk, I(θ) = [Eθ(∂θi log pθ(X))(∂θj log pθ(X))]i,j .

Remark. If η = τ(θ) : τ ∈ C1, τ ′(θ) 6= 0, then
I(τ(θ)) = I(θ)/τ ′(θ)2.
On Rk, the information matrix is +ve semi-definite (sym-
metry is obvious) because I(θ) = E[SST ].

Thm (CRLB/Information Inequality). Suppose
(a) Θ ⊆ R is an open interval.
(b) {pθ(x), θ ∈ Θ} have common support.
(c) p′θ(x) = ∂

∂θpθ(x) exists and is finite for all x and θ.
(d) ∂θ

∫
X pθ(x)dµ =

∫
X ∂θpθ(x)dµ.

Let δ(X) be an estimator s.t. E[δ(X)2] <∞, and I(θ) ∈
(0,∞), and

∫
X δ(x)∂θpθ(x)dµ = ∂θ

∫
X δ(x)pθ(x)dµ.

Then Var(δ(X)) ≥ [∂θEδ(X)]2/I(θ).
(this is just g′(θ)2/I(θ) for unbiased estimators).

Remark. If equality holds, pθ(x) is a 1-parameter exp.
fam. and δ(X) is the natural sufficient stat.

Lemma (Fisher info). Assume (a) - (d) and I(θ) <∞.
Then I(θ) = Var(∂θ log(pθ(x))).
If, in addition, p′′θ (x) exists ∀θ, x, and ∂2

θ

∫
pθ(x)dµ =∫

∂2
θpθ(x)dµ, then I(θ) = −E[∂2

θ log(pθ(X))].

Thm. Let pθ(x) = eη(θ)T (x)−B(θ)h(x) and θ ∈ Θ, an
open interval. Let τ(θ) = Eθ[T (X)], and assume T is not
constant. Then
(a) τ ′(θ) 6= 0 and I(τ(θ)) = 1/Varθ(T ).
(b) I(h(θ)) = [η′(θ)/h′(θ)]2Varθ(T ).

Propn (regularity of exp. fam.). Let µ be a σ-
finite measure on X and t1, · · · , tn : X → R. De-
fine G(θ1, · · · , θn) =

∫
X exp{

∑
θiti(x)}h(x)dµ, and

Ω = {θ : G(θ1, · · · , θn) <∞}. Then
(a) Ω is convex and θ 7→ logG(θ) is convex on Ω.
(b) Let Ω0 be the interior of Ω and assume Ω0 6= ∅.
Then, on Θ0, θ 7→ G(θ) is infinitely differentiable and
the derivatives can be taken inside the integral, e.g.
∂θiG =

∫
X ti(x) exp{

∑
θiti(x)}h(x)dµ.

Remark. Similar conclusions hold with the normalizing
constant e−B(θ). Moreover, B(θ) ∈ C∞.

Remark. For a general function η : Ω → R, all conclu-
sions hold at θ = θ0, provided η(θ0) is an interior point if
η = {η :

∫
eηt(x)h(x)dµ <∞} and η ∈ C∞.

Propn. If pη(x) = e
∑k
i=1 ηiTi(x)−A(η)h(x), and η ∈ η,



• Eη(Tj) = ∂
∂ηj

A(η)

• Covη(Tj , Tk) = ∂2

∂ηj∂ηk
A(η).

If pθ(x) = exp{
∑k
i=1 ηi(θ)Ti(x)−B(θ)}h(x), η(θ0) ∈ η,

• If k = 1, then Eθ0(T (X)) = B′(θ0)/η′(θ0) and

V ar(T (X)) = B′′(θ)
η′(θ)2 − η′′(θ)B′(θ)

η′(θ)3 .

• If k > 1, then Eθ(T (X)) = J−1∇B, where J = {∂ηj∂θi
}ij

and ∇B = { ∂
∂θi
B(θ)}i.

Propn (regularity of the estimator). Let δ(X) be an
estimator s.t. Var(δ(X)) < ∞. Then ∂θ

∫
δ(x)pθ(x)dµ =∫

δ(X)∂θpθ(x)dµ, at any θ0 ∈ (Ω)0, provided ∃b(x) s.t.

|Pθ0+h(x)−pθ0 (x)

hpθ0 (x) | ≤ b(x) for all sufficiently small h, and∫
b(x)|δ(x)|pθ(x)dµ < ∞ (in particular, this will hold if

Eθ0 [b(X)2] <∞, by Cauchy-Schwarz).

Propn (regularity of estimator in exp. fam.).
Let pθ(x) = eη(θ)t(x)−B(θ)h(x) and η ∈ C∞ (so that
B ∈ C∞). If δ(X) is an estimator with Var(δ(X)) < ∞,
then ∂θ

∫
δ(x)pθ(x)dµ =

∫
δ(x)∂θpθ(x)dµ.

Thm (Multi-parameter CRLB). Suppose
(a) Θ ⊆ Rk is an open set.
(b) {pθ(x), θ ∈ Θ} have common support.
(c) ∂θipθ(x) exists, ∀i, x, θ, and is finite.
(d) ∂θi

∫
X pθ(x)dµ =

∫
X ∂θipθ(x)dµ.

(e) ∂θi
∫
X δ(x)pθ(x)dµ =

∫
X δ(x)∂θipθ(x)dµ.

(f) I(θ) is finite and +ve definite.
Then we have Var(δ(X)) ≥ αT I(θ)−1α, where αi =
∂θiEθδ(X). In particular, if δ(X) is unbiased for g(θ),
αi = ∂θig(θ).

AVERAGE RISK OPTIMALITY
Setup. Suppose {Pθ, θ ∈ Θ} is a collection of proba-
bility measures on X dominated by a σ-finite measure
µ. Assume now that θ is a random variable on Θ, with
prior distn. π. Suppose we want to estimate g(θ). The
risk function is still R(g(θ), δ) = EX∼PθL(g(θ), δ(X)) =
E[L(g(θ), δ(X))|θ].

Def (Bayes risk) of δ: r(π, δ) = Eθ∼π[R(g(θ), δ)]

Def (Bayes estimator). δ0 is a Bayes estimator if
r(π, δ0) ≤ r(π, δ) for any other estimator δ.

Def (Bayes risk of a Prior). r(π) = infδ(r(π, δ)).

Remark. The joint distribution of (X, θ) is pθ(x)π(θ).
The marginal distribution of X is m(x) =

∫
Θ
pθ(x)π(dθ).

The posterior distn. is π(θ|x) = pθ(x)π(θ)/m(x) ∝
pθ(x)π(θ).

Thm (Bayes estimator for sq. err. loss). If
L(g(θ), δ(X)) = (g(θ)− δ(X))2, and E[g(θ)2] <∞,
(i) δ0 = E[g(θ)|X] is a Bayes estimator with Bayes risk
E[Var(g(θ)|X)].
(ii) If δ(X) is any other Bayes estimator, then δ0(X) =
δ(X) a.s. under the joint distn. of (X, θ).

Remark. (ii) also implies δ0(X) = δ(X) a.s. under the
marginal of X. If the marginal dominates the conditional,
this will further imply that δ0(X) = δ(X) a.s. Pθ,∀θ ∈ Θ,
i.e. we have uniqueness under the conditionals.

Lemma (Bias of Bayes estimator). Under squared
error loss, a Bayes estimator cannot be unbiased, unless
δ(X) = g(θ) a.s.

Def (Conjugate Prior). A non-trivial class of probabil-
ity distributions F is called a conjugate family of priors
for a model {Pθ : θ ∈ Θ} if the posterior distribution
π(θ|x) also belongs to F .

Example. For pθ(x) = exp{
∑k
i=1 ηi(θ)Ti(x) −

B(θ)}h(x), the conjugate family is π(θ) =

exp{
∑k
i=1 siηi(θ)− s0B(θ)}ψ(s0, ..., sk)

Def (least favourable). A prior π is least favourable
if, for all other distributions π′ on Θ, r(π) ≥ r(π′).
A sequence of priors {πn}n≥1 is least favourable if
limn→∞ r(πn) = supπ r(π).

Thm (minimax from Bayes). Suppose π is a distribu-
tion on Θ with Bayes estimator δπ, s.t. r(π) = r(π, δπ) =
supθ∈ΘR(g(θ), δπ). Then:
(a) δπ is minimax
(b) If δπ is the unique (w.r.t. the conditionals) Bayes
estimate w.r.t. π, then δπ is unique minimax.
(c) π is least favourable.

Corollary. A Bayes estimator with constant risk is min-
imax.

Thm (minimax from L.F.). Suppose {πn}n≥1 is a se-
quence of priors s.t. limn→∞ r(πn) = supθ∈ΘR(g(θ), δ0)
for some estimate δ0. Then:
(a) δ0 is minimax.
(b) {πn}n≥1 is least favourable.

Lemma (minimax on subset). Suppose δ(X) is
minimax for g(θ) on the parameter set Θ0 ⊆ Θ. If
supθ∈Θ0

R(g(θ), δ) = supθ∈ΘR(g(θ), δ), then δ is mini-
max for θ ∈ Θ.

Def (Admissible). An estimator δ is inadmissible if

∃δ′ s.t. R(g(θ), δ′) ≤ R(g(θ, δ), with strict inequality for
some θ ∈ Θ. Otherwise, δ is admissible.

Remark. If the loss is strictly convex, any estimator
which is not a function of the M.S. statistic is inadmissi-
ble (Rao-Blackwell).

Lemma. If the loss is strictly convex, δ is admissible
and R(g(θ), δ) = R(g(θ), δ′),∀θ ∈ Θ, then δ = δ′ a.s.
Pθ,∀θ ∈ Θ.

Lemma. Any unique (w.r.t. the conditionals) Bayes
estimator is admissible.

Lemma. An admissible estimator with constant risk is
minimax. If the loss function is strictly convex, it is also
unique minimax.

Lemma. If δ is unique minimax, then δ is admissible.

Thm (Karlin). Suppose {Pθ, θ ∈ Θ} is a one-
parameter exponential family pθ(x) = eθT (x)−B(θ)h(x),
for θ ∈ (a, b) (possibly unbounded). Let δλ,ν(X) =

1
1+λT (X) + νλ

1+λ , λ ≥ 0, ν ∈ R. If ∃θ0 ∈ Θ s.t.∫ θ0
a
e−νλθ+λB(θ)dθ =

∫ b
θ0
e−νλθ+λB(θ)dθ = ∞, then δ(X)

is admissible for estimating g(θ) = EθT (X), w.r.t squared
error loss.

Corollary If (a, b) = (−∞,∞) , then T is admissible for
EθT .

Def (improper prior). A measure π on the parameter
space Θ s.t. π(Θ) =∞.
If m(x) :=

∫
Θ
pθ(x)π(dθ) < ∞,∀x ∈ X , we can de-

fine a probability measure π(·|x) on Θ by π(A|x) =∫
A
pθ(x)π(dθ)/m(x).

Def (generalized Bayes estimate). A minimizer of∫
Θ×X L(g(θ), δ(x))pθ(x)π(dθ)dµ, where π is an improper

prior.

Thm (generalized Bayes estimate). Ifm(x) <∞,∀x,
a generalized Bayes estimate, w.r.t squared error, is the
posterior mean

∫
Θ
g(θ)π(dθ|x), provided

∫
Θ
g(θ)2π(dθ) <

∞.

Remark (Jeffrey’s Prior). One common
“vague”/improper prior is π(θ) ∝

√
I(θ). In the multi-

parameter case, π(θ) ∝
√

det(I(θ))

Def (hierarchical Bayes). The prior distribution on
the parameter θ has a hyper-parameter, λ, which itself
has a hyper-prior. We have, X|θ ∼ pθ(x), θ|λ ∼ πλ(θ),
λ ∼ ψ(λ).



Thm. Writing π(θ) =
∫
πλ(θ)ψ(λ)dλ, we have that

D(π(θ|x)||π(θ)) ≥ D(ψ(λ|x)||ψ(λ)). (HW5 q5)

Def (K-L divergence).

D(P ||Q) =
∫
p(x) log p(x)

q(x)dx.

Remark. It always exists and is ≥ 0 (maybe = infinity),
with equality iff p = q.

Def (empirical Bayes estimate). Assume the hyper-
parameter λ is now fixed. An estimator derived from the
posterior θ|x (e.g. the posterior mean) now also depends
on λ. Substituting λ with a non-trivial estimator of λ
derived from the marginal of X yields an empirical Bayes
estimate for θ.

James Stein Estimator. Let g(x) = (n−2)σ2

||x||22
x. Then

δJS = x − g(x) and has a uniformly better risk than the
UMVUE estimator (δ = x) for n ≥ 3. (HW5 Q2)

ASYMPTOTIC OPTIMALITY
Setup. Consider a candidate estimator δn(X1, ..., Xn)
for estimating g(θ).

Def (Consistency). δn(X) is consistent for g(θ) if

δn(X)
p−→ g(θ), under Pθ ∀θ ∈ Θ.

Def (Likelihood). L(θ|X) =
∏n
i=1 pθ(Xi). If η = g(θ),

the likelihood of η is L̃(η|X) = supθ:g(θ)=η L(θ|X).

Def (MLE). If there exists a unique θ̂n which is a global

maximizer of θ 7→ L(θ|X), then θ̂n is the MLE.

Def (Asymptotic efficiency). for a sequence of esti-

mators θ̃n:
√
n(θ̃n − θ0)

D−→
θ0

N(0, I(θ0)−1)

Def (Tightness). A sequence of RVs {Yn}n≥1 is tight
if ∀ε > 0, ∃Kε <∞ s.t. supm≥1 P (|Yn| > Kε) ≤ ε.

Thm. If Yn
D−→ Y , then {Yn}n≥1 is tight.

Def (
√
n-consistent). An estimator θ̃n is

√
n-consistent

for θ if
√
n(θ̃n − θ0) is tight under Pθ0 , ∀θ0 ∈ Θ.

Thm. If θ̃n is
√
n-consistent for θ, then θ̃n

p−→ θ.

Asymptotic Risk Thm (MLE) X1, ..., Xn
iid∼ Pθ, θ ∈

Θ, with pdf pθ(·). Consider the hypotheses:

(A0) Identifiability: Pθ1 6= Pθ2 whenever θ1 6= θ2.
(A1) {pθ(·), θ ∈ Θ} have common support.
(A2) Θ ⊆ R and θ0 is an interior point of Θ.
(A3) The function θ 7→ pθ(x) is 3 times differen-

tiable and supθ∈[θ0−δ,θ0+δ] |∂3
θ log pθ(x)| ≤ M(x), with

Eθ0 [M(X1)] <∞, for some δ > 0.
(A4) θ 7→

∫
X pθ(x)dµ(x) can be differentiated twice

through the integral. Further, 0 < I(θ0) <∞.
(A2*) Θ is an open interval.
(A3*) The map θ 7→ pθ(x) is C2 and
supθ∈[θ0−δ,θ0+δ] |∂2

θ log pθ(x)| ≤ M(x), with E[M(X1)] <
∞, for some δ > 0.

• Under A0 and A1, Pθ0(ln(θ0|X) > ln(θ|X)) → 1 as
n→∞, ∀θ 6= θ0.
• Under A0 and A1, if Θ is finite, the MLE θ̂n exists
with high probability (i.e. the probability that the like-
lihood function has a unique maximizer goes to 1), and

Pθ0(θ̂n = θ0)→ 1 as n→∞.
• Under A0-2, if θ 7→ pθ(x) is C1 (differentiable with

continuous derivative), there exists a sequence of roots θ̂n
of the likelihood equation l′n(θ) = 0 which is consistent

for θ0 (though θ̂n depends on θ0 so is not an estimator).
• Under A0-2, if θ 7→ pθ(x) is differentiable and the

likelihood equation l′n(θ) = 0 has a unique root θ̂n, then

θ̂n
p−→ θ0 under Pθ0 , and θ̂n is the MLE w.h.p.

• (Asymptotic normality of MLE). Under A0-4, for any

consistent sequence of roots θ̂n of l′n(θ) = 0, we have
√
n(θ̂n − θ0)

D−→ N(0, I(θ0)−1).

• Under A0, A1, A4, A2* and A3*, if
√
n(θ̂n − θ0)

D−→
N(0, V (θ0)), then the set {θ : V (θ) < I(θ0)−1} has
Lebesgue measure 0.
• Under A0-4, if θ̃n is

√
n-consistent for θ, then

δn := θ̃n − l′n(θ̃n)/l′′n(θ̃n) is asymptotically efficient.

Remark.
l′n(θ0)√

n

D−→ N(0, I(θ0),
l′′n(θ0)
n

p−→ −I(θ0),

| l
′′′
n (ξn)
n | ≤ 1

n

∑
M(Xi)

p−→ EM(X1) < ∞ where

ξn ∈ (θ0, θ̂n).

Propn. If the MLE is consistent and conditions A0
through A4 hold, then the MLE is asymptotically effi-
cient (HW6 Q6).

Example (Exp. Fam.). Let pθ(x) = eθT (x)−B(θ)h(x),
θ ∈ Θ, an open interval. Let ln(θ) = log

∏
pθ(xi). Then

l′′n(θ) = −nB′′(θ) = −nVar(T (X)) < 0, so θ → ln(θ) is
strictly concave so l′n(θ) = 0 can have at most 1 root.

Thm (Slutsky). Suppose Xn
D−→ X, An

p−→ a, Bn
p−→ b.

Then AnXn +Bn
D−→ aX + b.

Thm (Invariance of MLE). (a) If θ̂ is a global maxi-

mizer of θ 7→ L(θ|X), then η̂ = g(θ̂) is a global maximizer

of η 7→ L̃(η|X).

(b) If θ̂ is the MLE and ∀η, |{θ : g(θ) = η}| <∞, then η̂
is the MLE for η.

Thm (∆-Method). If
√
n(Xn − µ)

D−→ N(0, σ2), and

g ∈ C1 s.t. g′(µ) 6= 0, then
√
n(g(Xn) − g(µ))

D−→
N(0, σ2g′(µ)2).

Remark. Multivariate result holds
√
n(g(Xn)− g(µ))

D−→
N(0, ξTΣξ) where ξi = ∂g

∂xi
|x=µ

Thm (Modified ∆-Method). If
√
n(Xn − µ)

D−→
N(0, σ2), and g ∈ C2 s.t. g′(µ) = 0, then n(g(Xn) −
g(µ))

D−→ σ2

2 g
′′(µ)χ2

1.

Thm (Uniform integrability). If Xn
D−→ X and

supn≥1 E[|Xn|1+δ] <∞ for some δ > 0, then EXn → EX.

Thm (Multivariate CLT for MLE). Under A0, A1,
and:
(A2) Θ ⊆ Rp and θ0 ∈ Θ is an interior point.
(A3) The function θ 7→ pθ(x) is 3 times partially differ-

entiable and sup||θ−θ0||2<δ

∣∣∣∂3 log pθ(x)
∂θi∂θj ∂θk

∣∣∣ ≤ Mijk(x), where

Eθ0Mijk(X) <∞, ∀i, j, k.
(A4) Eθ0∂θi log pθ(X) = 0 and

Eθ0 [∂ log pθ(X)
∂θi

∂ log pθ(X)
∂θj

] = −Eθ0
[
∂2 log pθ(X)
∂θi∂θj

]
= Iij(θ0),

with the matrix I(θ0) finite and +ve definite.
• Then there exists a consistent sequence of roots of the

likelihood equation ∂ log pθ(x)
∂θi

= 0, 1 ≤ i ≤ p.
• Further, this sequence is asymptotically efficient, i.e.
√
n(θ̂n − θ0)

D−→ N(0, I(θ0)−1).

HYPOTHESIS TESTING
Setup. Let {Pθ, θ ∈ Θ} be a collection of probability
measures on X dominated by a σ-finite measure µ. Let
pθ(·) = dPθ

dµ . Let Θ0 and Θ1 be disjoint subsets of Θ.
Given X ∼ Pθ for some θ ∈ Θ, we want to test whether
θ ∈ Θ0 or θ ∈ Θ1.

Def (Test function). A function φ : X → {0, 1} is
called a non-randomized test function.

Def. Types of errors of a test. If θ ∈ Θ0, then φ = 1 is
Type I error. If θ ∈ Θ2, then φ = 0 is Type II error.

Def (Power). The power of a test φ is 1 - Probability of
type II error; β(θ) = Pθ(φ = 1) for θ ∈ Θ1, a function of
θ.



Def (Size). The size of a test φ is supθ∈Θ0
Pθ(φ = 1).

Let α ∈ (0, 1). A test φ is called level α if supθ∈Θ0
Pθ(φ =

1) ≤ α.

Def (UMP). A test φ is called uniformly most power-
ful level α if, given any other level α test ψ, we have
Pθ(φ = 1) ≥ Pθ(φ = 1) ∀θ ∈ Θ1.

Def. A function φ : X → [0, 1] is called a randomized test
function. If φ = p, toss a coin w prob heads p. If heads
choose Θ1, else Θ0. In all previous definitions, replace
Pθ(φ = 1) by Eθ[φ], and Pθ(φ = 0 by 1− Eθ[φ].

Thm (NP lemma). Suppose we want to testH0 : θ = θ0

vs H1 : θ = θ1 at level α.
(i) There exists a test φ satisfying
. (a) Eθ0 [φ] = α
. (b) There exists k ∈ [0,∞] such that

φ(X) = 1 if pθ1(X) > kpθ0(X)

= 0 if pθ1(X) < kpθ0(X)

(ii) If a test φ satisfies (a) and (b), then φ is a Most Pow-
erful test for testing θ = θ0 vs θ = θ1.
(iii) If φ is Most Powerful level α, it must satisfy (b) for
some k. It also satisfies (a), unless Eθ1 [φ] = 1, in which
case Eθ0 [φ] ≤ α.

Remark. If the boundary {X : pθ1(X) = kpθ0(X)} has
measure 0, then the MP test is unique.

Corollary. Let β = β(θ1) denote the power of the MP
test for testing θ = θ0 vs θ = θ1 at level α ∈ (0, 1). Then
β ≥ α. Further, β > α unless pθ1 = pθ0 .

Def (MLR). Suppose Θ is an interval (Keener only re-
quires that Θ ⊆ R). We say that {pθ(·), θ ∈ Θ} have the
Monotone Likelihood Ratio property in a statistic T (X),
if ∀θ1 < θ2 ∈ Θ, pθ2(x)/pθ1(x) is a non-decreasing func-
tion of T (X).
Keener: Natural conventions concerning division by zero
are used here, with the likelihood ratio interpreted as ∞
when pθ2 > 0 and pθ1 = 0. On the null set where both
densities are zero the likelihood ratio is not defined and
monotonic dependence on T is not required.

Thm. Let {pθ(·), θ ∈ Θ} be MLR in T (X), Θ an interval,
and pθ1 6= pθ2 if θ1 6= θ2.
(i) For testing H0 : θ ≤ θ0 vs H1 : θ > θ0 at level
α ∈ (0, 1), there exists a UMP test φ of the form

φ(X) = 1 if T (X) > c

= ν if T (X) = c

= 0 if T (X) < c,

and Eθ0φ(X) = α.
(ii) The power function β(θ) = Eθφ is strictly increasing
on the set {θ : 0 < β(θ) < 1}.
(iii) For all θ′ ∈ Θ, the test of part (i) is UMP for testing
H0 : θ ≤ θ′ vs H1 : θ > θ′ at level α′ = β(θ′).
(iv) For any θ < θ0, φ minimises β(θ) among all tests
satisfying Eθ0ψ(X) = α.

Lemma. Let {pθ(.), θ ∈ Θ} be MLR in T (X), and Θ an
interval.
(i) If ψ : R→ R is non-decreasing, then so is θ 7→ Eθψ(T ).
(ii) If ψ has a simple change of sign, i.e. ∃x0 ∈ R s.t
T (x) < x0 =⇒ ψ(T (x)) ≤ 0
T (x) > x0 =⇒ ψ(T (x)) ≥ 0

Then one of three things happen:
a. Eθψ(T ) ≥ 0, ∀θ ∈ Θ
b. Eθψ(T ) ≤ 0, ∀θ ∈ Θ
c. ∃θ0 s.t. Eθψ(T ) ≤ 0, ∀θ < θ0, Eθψ(T ) ≥ 0, ∀θ > θ0.

(iii) Suppose pθ(x) > 0,∀x ∈ X , θ ∈ Θ and the function
pθ′(x)/pθ(x) is strictly increasing in T (x) for θ′ > θ.
Let ψ be as in (ii) and further assume Pθ(ψ(T ) 6= 0) > 0.
If Eθ0ψ(T ) = 0, then Eθψ(T ) > 0 for θ > θ0, Eθψ(T ) < 0
for θ < θ0.

Lemma. Assume pθ(x) > 0,∀θ ∈ Θ, x ∈ X , Θ
an interval, and pθ′(x)/pθ(x) is strictly increasing in
T (X),∀θ < θ′. Then there is a unique test function φ,
which is a function of T , of the form:
φ(X) = 1 if T (X) ∈ (c1, c2)

= νi if T (X) = ci
= 0 if T (X) /∈ [c1, c2]

such that Eθ1φ = α1 and Eθ2φ = α2, for some θ1 6= θ2,
α1, α2 ∈ (0, 1).
That is to say, if φ∗(X) is such that
φ∗(X) = 1 if T (X) ∈ (c∗1, c

∗
2)

= ν∗i if T (X) = c∗i
= 0 if T (X) /∈ [c∗1, c

∗
2]

and Eθ1φ
∗ = α1 and Eθ2φ

∗ = α2, then φ = φ∗ a.s.

Thm (Generalized NP). Let f1, ..., fm+1 be real-valued
integrable functions w.r.t µ. Let (c1, ..., cm) ∈ Rm and
set C0 = {φ :

∫
φfidµ = ci, 1 ≤ i ≤ m,φ is a test fn} and

assume C0 is not empty.
(i) Among all φ ∈ C0, there exists a test φ0 which maxi-
mizes

∫
φfm+1dµ.

(ii) A sufficient condition for φ0 ∈ C0 to maximize∫
φfm+1dµ is that ∃(K1, ...,Km) s.t.
φ0 = 1 if fm+1 > K1f1 + ...+Kmfm (∗)
φ0 = 0 if fm+1 < K1f1 + ...+Kmfm (∗)

(iii) If φ0 ∈ C0 satisfies (∗) for some K1, ...,Km ≥ 0, then

φ0 maximizes
∫
φfm+1dµ among all tests φ satisfying∫

φfidµ ≤ ci, for 1 ≤ i ≤ m.
(iv) The set M = {(

∫
φf1dµ, ...,

∫
φfmdµ), φ is a test fn},

a subset of Rm, is closed and convex. If (c1, ..., cm) is an
interior point of M , then ∃K1, ...,Km and φ0 ∈ C0 such
that (∗) holds, and a necessary condition for φ0 ∈ C0
to maximize

∫
φfm+1dµ is that (∗) holds a.s. (for some

K1, · · · ,Km).

Propn. If φ is MP, and T is sufficient, then ψ := E[φ|T ]
is MP for the same test.

Thm. Suppose we want to test H0 : θ ≤ θ1 or
θ ≥ θ1 vs H1 : θ1 < θ < θ2 at level α, where
X ∼ pθ(x) = eη(θ)T (x)−B(θ)h(x), and η strictly increas-
ing.
(i) There exists a UMP test φ which satisfies:
φ(X) = 1 if c1 < T < c2

= νi if T = ci
= 0 otherwise.

and Eθ1φ = Eθ2φ = α.
(ii) Among all tests ψ satisfying Eθ1ψ = Eθ2ψ = α, φ
minimizes type I error Eθ′ψ for any θ′ ≤ θ1 or θ′ ≥ θ2.

Setup (Least Favorable π). Consider the problem of
testing H0 : θ ∈ Θ0 vs H1 : θ = θ1. Let π be a distribu-
tion on Θ0 and let m(x) =

∫
Θ0
pθ(x)π(dθ). Consider the

modified problem H ′0 : X ∼ m(·) vs H1 : X ∼ pθ1(·). Let
φπ be the NP test (MP) at level α with power βπ.

Theorem. Assume φπ is level α for the original problem.
Then:
(i) φπ is MP for the original problem.
(ii) If φπ is unique MP for the modified problem, then φπ
is unique MP for the original problem.
(iii) βπ ≤ βπ′ ,∀π′. (i.e π is least favorable).

Remark. To find a UMP under a composite null, use a
Least Favourable Prior (including point masses)! (unless
we can apply our standard MLR/exp. fam. results).

Def (p-value). Suppose we want to test H0 vs H1 at
level α. Let φα be a non-randomized test function at level
α. Let Sα = {X : φα(X) = 1} be the rejection region,
and assume these are nested: α1 < α2 =⇒ Sα1

⊆ Sα2
.

The p-value is p̂(X) = inf{u : X ∈ Su}.
Intuitively, given the p-value, you can construct a level α
test by rejecting H0 if p̂(X) < α, accepting otherwise.

Lemma. Suppose X ∼ pθ for some θ ∈ Θ, and we want
to test H0 : θ ∈ Θ0 vs H1 : θ ∈ Θ1 at level α. Let
{φα}α∈(0,1) be a collection of nested level α tests.



(i) Then Pθ(p̂(X) ≤ u) ≤ u,∀u ∈ (0, 1), θ ∈ Θ0

(ii) If ∃θ0 ∈ Θ0 such that Pθ0(X ∈ Sα) = α,∀α then
Pθ0(p̂(X) ≤ u) = u.

Def (Confidence Interval). Let X ∼ Pθ for some
θ ∈ Θ. For every x ∈ X , let S(x) be a subset of Θ.
We say the collection of sets {S(x), x ∈ X} is a (1 − α)
confidence region if Pθ(θ ∈ S(X)) ≥ 1− α, ∀θ ∈ Θ.
Assume Θ ⊆ R. If S(x) = [l(x),∞), then we call it a
lower confidence interval. If S(x) = (−∞, u(x)], an upper
CI. If S(x) = [l(x), u(x)], a 2-sided CI.

Remark. Suppose for every θ0 ∈ Θ, φθ0 is a non-
randomized level α test for H0 : θ = θ0 vs H1.
Let S(x) = {θ : φθ(X) = 0}. Then {S(x) : x ∈ X} is a
(1− α) confidence region.

Remark (Asymptotic CI). In practice, suppose
√
n(θ̂ − θ) d→ N(0, V 2(θ)) where V is continuous. Then,

by Slutsky’s (and cts. mapping thm),
√
n θ̂−θ
V (θ̂)

d→ N(0, 1),

and therefore, (θ̂ − 1√
n
z1−α/2V (θ̂), θ̂ + 1√

n
z1−α/2V (θ̂)) is

a 1− α C.I. for θ.

Def (Unbiased Test). Suppose we want to test
H0 : θ ∈ Θ0 vs H1 : θ ∈ Θ1 at level α. We say a
test φ is level α unbiased if
(i) supθ∈Θ0

Eθφ ≤ α
(ii) infθ∈Θ1 Eθφ ≥ α

Def (UMPU). We say φ is Uniformly Most Powerful
Unbiased at level α, if φ is unbiased at level α and for
any other unbiased test ψ, Eθφ ≥ Eθψ,∀θ ∈ Θ1.

Remark. If φ is UMP, it is also UMPU.

Lemma (UMPU). Suppose {pθ, θ ∈ Θ} is a collection
of prob. measures, s.t. θ 7→ Eθφ is continuous in θ (met-
ric on Θ implicit). If φ0 is a test such that:
(i) φ0 is UMP among the class of tests satisfying
Eθφ = α,∀θ ∈ ∂Θ0 ∩ ∂Θ1. (∂S = boundary of S).
(ii) φ0 is level α for θ ∈ Θ0.
Then φ0 is UMPU for θ ∈ Θ0 vs θ ∈ Θ1 at level α.

Theorem. Let X ∼ pθ(x) = eη(θ)T (x)−A(θ)h(x), η
strictly increasing and continuous, and Θ an open inter-
val. For the test H0 : θ ∈ [θ1, θ2] vs H1 : θ /∈ [θ1, θ2], there
exists a UMPU level α test φ given by:
φ = 1 if T (X) /∈ [c1, c2]

= νi if T (X) = ci
= 0 otherwise.

and Eθ1φ = Eθ2φ = α.

Theorem. X ∼ pθ(x) = eη(θ)T (x)−A(θ)h(x), Θ is an
open interval, η ∈ C1 and η′(θ) > 0. We want to test
H0 : θ = θ0 vs H1 : θ 6= θ0 at level α. There exists a
UMPU of the form:
φ = 1 if T (X) /∈ [c1, c2]

= νi if T (X) = ci
= 0 if T (X) ∈ (c1, c2),

where Eθ0φ = α and Eθ0{φ(X)T (X)} = αEθ0{T (X)}.

Lemma. Let M = {(Eθ0 [φ], Eθ0 [φT ]), φ is a test fn} ⊆
R2. Then for any α ∈ (0, 1), (α, αEθ0T ) is an interior
point of M . (consider φ = α± εI(T > Eθ0T )) (hw3 q3)

Lemma. Suppose φ is a test of the form
φ = 1 if T (x) > c

= ν if T (x) = c
= 0 if T (x) < c

Then Eθ0φ = α and Eθ0φT = αEθ0T cannot hold simul-
taneously. (consider (φ− α)(T − c) ≥ 0)

Lemma. There is at most one test of the form:
φ = 1 if T /∈ [c1, c2]

= 0 if T ∈ (c1, c2)
= νi if T = ci

such that Eθ0φ = α, Eθ0φT = αEθ0T . (HW3 Q4)

Theorem. Suppose X ∼ pθ,η(x) =

eθU(x)+
∑K
i=1 ηiTi(x)−A(θ,η)h(x) where (θ, η) ∈ Θ × Ω is

open. Suppose we want to test H0 : θ ≤ θ0 vs H1 : θ > θ0

at level α. In this case, there exists a UMPU of the form
φ = 1 if U > K(T)

= ν(T) if U = K(T)
= 0 if U < K(T)

where Eθ0,η(φ(U,T)|T) = α a.s.

Remark. The conditional distribution of U given
T = t is an exponential family of the form p̃(u|t) =
eθu−At(θ)ht(u), θ ∈ Θ.

Remark. Similarly, you can find UMPU in the expo-
nential family pθ,η(x) = exp{θU(x) +

∑k
i=1 ηiTi(x) −

A(θ, η)}h(x) for these problems:
(ii) H0 : θ /∈ (θ1, θ2) vs H1 : θ ∈ (θ1, θ2).
(iii) H0 : θ ∈ [θ1, θ2] vs H1 : θ /∈ [θ1, θ2].
(take C = {ψ : Eθ1,η(ψ|T ) = α a.s., Eθ2,η(ψ|T ) = α a.s.})
(iv) H0 : θ = θ0 vs H1 : θ 6= θ0

(take C = {ψ : Eθ0,η(ψ|T ) = α a.s., Eθ0,η(ψU |T ) =
αEθ0(ψ|T ) a.s.})

Def (LRT). Suppose X1, · · · , Xn are iid from pθ(·), and
you want to test H0 : θ ∈ Θ0 vs H1 : θ ∈ Θ1. The LRT

statistic is Λ(X1, · · · , Xn) =
supθ∈Θ0

pθ(X1,··· ,Xn)

supθ∈Θ0∪Θ1
pθ(X1,··· ,Xn) .

Remark. In many examples −2 log Λ(X1, · · · , Xn) has
an asymptotic χ2 distribution with dim(Θ0 ∪ Θ1) −
dim(Θ0) degrees of freedom.

Thm (Wilks). Suppose A0-A4 hold, MLE is consistent,
Θ ⊆ Rk open. Suppose we want to test H0 : θ = θ0 vs

H1 : θ 6= θ0. Then −2 log Λ(X1, · · · , Xn)
d→ χ2

k.

Wald’s Test. H0 : θ = θ0 vs H1 : θ 6= θ0, A0-A4 and

MLE consistent. Thus,
√
n(θ̂n− θ0)

d→ N(0, I(θ0)−1) un-

der H0. Reject H0 if |θ̂n − θ0| >
z1−α/2√
nI(θ0)

. For general k,

reject if n(θ̂n − θ0)T I(θ0)(θ̂n − θ0) > χ2
k,1−α. Can replace

I(θ0) by I(θ̂n) and still have this asymptotic distn.

Rao Score Test. Let Uθ(Xi) = ∂
∂θ log pθ(Xi). We

know Eθ0Uθ0(Xi) = 0, V arθ0Uθ0(Xi) = I(θ0), so
1√
n

∑
Uθ0(Xi)

d→
θ0

N(0, I(θ0)). So reject H0 : θ = θ0

if | 1√
n

∑
Uθ0(Xi)| >

z1−α/2√
I(θ0)

.

M-ESTIMATION
Setup. X1, · · · , Xn

iid∼ P on (X ,A). Family of criterion
functions mθ(x),mθ : X → R, θ ∈ Θ (e.g. −L(θ,X)).

Def (M-estimator). θ̂n = arg maxθ∈Θ
1
n

∑
mθ(xi).

• e.g. mean minimizes 1
n

∑n
i=1(Xi − θ)2

• e.g. median minimizes 1
n

∑n
i=1 |Xi − θ|

Def (Z-estimator). θ̂n such that
∑
Mθ(xi) = 0.

• e.g. MLE often solves
∑n
i=1∇θ log pθ(Xi) = 0

Setup. K ⊆ Rp compact. C(K) is the space of continu-
ous functions K → R. C(K) is a Banach space with norm
||w||∞ = supt∈K |w(t)|, and it is separable (has a count-
able dense subset) W1,W2, · · · are iid random functions
on C(K) (e.g. Wi(t) = mt(Xi)).

Thm. Suppose W is a random function in C(K), K com-
pact. Let µ(t) = EW (t), t ∈ K. If E||W ||∞ <∞, then
(i) µ is continuous.
(ii) Define Mε(t) := sups:||t−s||<ε |W (s) − W (t)|. Then
supt∈K EMε(t)→ 0 as ε ↓ 0

Thm. W1,W2, · · · iid random functions in C(K), K
compact. Let µ(t) = EW (t), Wn(·) = 1

n

∑
Wi(·). If

E||W ||∞ <∞, then ||Wn − µ||∞
p→ 0 as n→∞.

Thm. {Gn}n≥1 random functions in C(K), K compact.

Suppose ||Gn − g||∞
p→ 0, g non-random in C(K). Then

(i) If {tn}n≥1 ⊆ K are random vectors s.t. tn
p→ t∗(∈ K),

then Gn(tn)
p→ g(t∗).



(ii) If g achieves its maximum at a unique t∗ and
if {tn}n≥1 are random vectors maximizing Gn, i.e.

Gn(tn) = supt∈K Gn(t), then tn
p→ t∗.

(iii) (from Keener, 9.4.3) If K ⊆ R and g(t) = 0 has a
unique solution t∗, and if tn are RVs solving Gn(tn) = 0,

then tn
p→ t∗.

Remark (MLE). X1, · · · , Xn iid pθ, θ ∈ Θ, θ0 de-

notes the truth. θ̂n = arg maxθ∈Θ[ln(θ) − ln(θ0)],
ln(θ) =

∑
log pθ(xi). Here Wn = ln(θ) − ln(θ0),

where Wi(θ) = log pθ(xi)
pθ0 (xi)

; EWi(θ) = −I(θ0, θ) =

−
∫

log
fθ0 (x)

fθ(x) fθ0(x)dµ(x), (KL divergence). Have θ0 =

arg maxθ∈Θ EW (θ), by lemma.

Lemma. If Pθ 6= Pθ0 , then I(θ0, θ) > 0 and I(θ0, θ0) = 0.

Thm. Θ ⊆ Rp compact. Eθ0 ||W ||∞ < ∞ where

W (θ) = log pθ(X)
pθ0 (X) . pθ(·) is a continuous function in θ

for almost all x. pθ 6= pθ0 ∀θ 6= θ0. Then, under Pθ0 ,

θ̂n
p→ θ0.

Thm. Let Θ = Rp, W (θ) = log pθ(X)
pθ0 (X) . Suppose

(i) θ 7→ pθ(x) is cts.
(ii) θ 6= θ0 =⇒ pθ 6= pθ0
(iii) ∀K compact, K ⊆ Θ, Eθ0 supθ∈K |W (θ)| <∞
(iv) ∃a > 0 s.t. Eθ0 sup||θ||>aW (θ) <∞.
(v) pθ(x)→ 0 as ||θ||2 →∞.

Then θ̂n
p→ θ0 under Pθ0 , where θ̂n denotes the MLE, if

it exists.

Remark. The weaker condition Eθ0 supθ∈ΘW (θ) < ∞
is sufficient. Also, Θ ⊆ Rp can be any open set.

Remark. Let θ̂n be a global maximizer of Wn(θ). As-

sume A0-A4, and θ̂n is consistent. Then
√
n(θ̂n − θ0)

d→
N(0, I(θ0)−1) under Pθ0 . (pf: check whp l′n(θ̂) = 0)

Thm. Let W (θ) = log pθ(X)
pθ0 (X) . Suppose

(i) Eθ0 supθ∈ΘW (θ) <∞
(ii) θ 7→ pθ(x) is upper semi cts
(iii) θ 6= θ0 =⇒ Pθ 6= Pθ0
(iv) Θ = ∪l≥1Kl, Kl compact, increasing, s.t.
liml→∞ supθ∈KC

l
W (θ) = −∞ a.s. (w.r.t. pθ,∀θ).

Then θ̂n
p→ θ0. (HW3 Q1)

a) ∃l s.t. θ0, θ̂n ∈ Kl whp. b) Fix δ > 0. ∀θ ∈ Bl := Kl ∩ {θ ∈
Θ : d(θ, θ0) ≥ δ}, ∃ neighborhood Vθ s.t. Eθ0 supθ∈Vθ W (θ,X1) <

Eθ0W (θ0, X1) (by u.s.c.). c) Bl is compact + WLLN =⇒
supθ∈Bl Wn(θ,X) < Wn(θ0, X) whp

Prop. Let Θ be an interval and Zn(θ) a random func s.t.

(i) θ 7→ Zn(θ) is non-decreasing with Zn(θ̂n) = op(1)

(ii) Zn(θ)
p→ Z(θ),∀θ, where Z(θ) is non-random.

(iii) θ 7→ Z(θ) is strictly increasing with Z(θ0) = 0.

Then θ̂n
p→ θ0. (HW3 Q2).

CONTIGUITY AND LAN
Def (absolute continuity of measure). Let P and
Q be two probability measures on (X ,F). We say P
is absolutely continuous w.r.t Q (noted P � Q) if
Q(A) = 0 =⇒ P (A) = 0.
By Radon-Nikodyn theorem, P � Q iff P (A) =

∫
A
hdQ

for some non-negative measurable h : (X ,F) → (R,B),
i.e. dP/dQ = h.

Prop. P � Q iff Q(An)→ 0 =⇒ P (An)→ 0, ∀{An}.

Def (contiguity). Let Pn and Qn be prob measures
on (Xn,Fn). Pn is contiguous to Qn (noted Pn / Qn) if
Qn(An)→ 0 =⇒ Pn(An)→ 0.

Prop. Pn /Qn iff Tn
p→
Qn

0 =⇒ Tn
p→
Pn

0 ∀ RVs Tn on Xn

Def (total variation distance). ||P − Q||TV =
sup
A∈F
|P (A) − Q(A)|. If µ is a dominating measure

for P and Q, and p = dP/dµ, q = dQ/dµ, then
||P −Q||TV = 1

2

∫
X |p(x)− q(x)|dµ.

Also ||P −Q||TV = |P (A)−Q(A)| where A =
{
p
q ≥ 1

}
.

Prop. If ||Pn − Qn||TV → 0 then Pn / .Qn. Note the
converse is not true (e.g. Pn = N(0, 1), Qn = N(1, 1)).

Thm (Portmanteau). Let S be a metric space, with a
Borel σ-algebra. Let Pn, P be prob measures on S. Then
TFAE:
(i) lim

n→∞

∫
gdPn =

∫
gdP , ∀g bounded continuous.

(ii) lim sup
n→∞

∫
gdPn ≤

∫
gdP , ∀g u.s.c. bounded above.

(iii) lim inf
n→∞

∫
gdPn ≥

∫
gdP , ∀g l.s.c. bounded below.

(iv) Pn(A)→ P (A), ∀A s.t P (∂A) = 0.

Remark. Can change
∫
gdPn to EPng(Xn) and

∫
gdP

to EP g(X) in (i) - (iv).
Note EPn [g(Xn)] =

∫
g(Xn)dPn =

∫
g(Xn(ω))Pn(dω) =∫

g(x)PXn(dx) = EPXn [g], where PXn(A) = Pn(X ∈ A)
is the distribution function of Xn.

Note also that Xn
d→
Pn
X means EPng(Xn)→ XP g(X) for

all g bdd. cts., or equivalently that the distn. funcs PXn

converge weakly to PX .

Remark. If U is open, 1U is l.s.c, and if K is closed, 1K

is u.s.c. Moreover, for (ii) and (iii), we can equivalently
take g just of this form.

Def. f is l.s.c. at x0 if ∀ε > 0∃δ > 0 : ||x − x′|| <
δ =⇒ f(x′) ≥ f(x0) − ε, when f(x) < ∞ (and
f(x′) → ∞ as x′ → x0 if f(x) = ∞). Equivalently,
lim infx→x0

f(x) ≥ f(x0). Change to f(x′) ≤ f(x0) + ε
for u.s.c.

Lemma. Let µ be a dominating measure of P and Q,
and p = dP/dµ, q = dQ/dµ. Then TFAE:
(i) P << Q
(ii) P (q = 0) = 0
(iii)

∫
p/qdQ = 1

Def. Let dP/dQ = p/q if q > 0 and = 0, otherwise. In
general

∫
hdP ≥

∫
h dPdQdQ, with equality if P � Q.

Le Cam’s first lemma. Let (Pn, Qn) be prob measures
on (Xn,Fn). The following are equivalent:
(i) Pn / Qn

(ii) dQn
dPn

d→
Pn
U along a subsequence, then Pr(U = 0) = 0

(iii) If dPn
dQn

d→
Qn

V along a subsequence, then EV = 1.

Remark. If dQn
dPn

d→
Pn

U , such that Pr(U = 0) = 0 and

EU = 1, then Pn / .Qn.

Cor. Suppose dQn
dPn

d→
Pn

eN(µ,σ2) such that µ+ σ2

2 = 0.

Then Pn / .Qn.

Remark. If dQn
dPn

d→
Pn

eN(µ,σ2) and Pn / Qn, then

µ+ σ2

2 = 0.

Le Cam’s third lemma. Let Pn / Qn. Assume(
Xn,

dPn
dQn

)
d→
Qn

(X,R) with distribution FX,R(x, r) =

P (X ≤ x,R ≤ r), then
(
Xn,

dPn
dQn

)
converges in distribu-

tion under Pn and EPnf(Xn,dPn/dQn)→ E{Rf(X,R)},
∀f bounded cts.

Corollary. Assume
(
Xn, log dPn

dQn

)
d→
Qn

(X,Z) ∼

N

([
µ1

µ2

]
,

[
σ2

1 σ12

σ12 σ2
2

])
where σ12 = σ1σ2ρ, such that

µ2 +
σ2

2

2 = 0, then Xn
d→
Pn
N(µ1 + σ12, σ

2
1).

Remark. The same holds with vector-valued R.V. Xn.
Note that in this case, µ1 would be a vector, σ2

1 would be
a matrix, and σ12 would ve a vector.



Corollary. Under previous corollary, we also have
jointly:

(Xn, log dPn
dQn

)
d→
Pn
N

([
µ1 + σ12

µ2 + σ2
2

]
,

[
σ2

1 σ12

σ12 σ2
2

])
(hw4 q6)

Definition (LAN). Let Θ be open. For every θ0, let
Pnθ0 be a prob measure on (Xn,Fn). LAN holds at θ0 if
there exists a positive sequence {φn}n≥1 converging to 0,

s.t ∀h fixed, log
dPnθ0+hφn

dPnθ0
= h∆n − h2

2 I(θ0) + εn(h), for

some I(θ0) > 0, s.t.

(i) ∆n
d→
Pnθ0

N(0, I(θ0))

(ii) εn
p→
Pnθ0

0.

Remark. LAN =⇒ Pn
θ0+ h√

n

/ .Pnθ0 .

Remark. If in IID set-up A0−A4 hold, LAN holds with
φn = 1/

√
n.

Thm. Suppose LAN holds at θ0, for all θ0 ∈ Θ. If
Tn−θ0
φn

d→
Pnθ

N(0, σ2(θ)), ∀θ0 ∈ Θ then σ2(θ0) ≥ 1/I(θ0) for

a.e. θ0 (under Lebesgue measure).

Cor. If σ(θ) and I(θ) are both continuous, then σ2(θ0) ≥
1/I(θ0), ∀θ0 ∈ Θ.

Lemma. Suppose LAN holds at θ0, ∀θ0 ∈ Θ. Let Tn be

s.t. Tn−θ0
φn

d→
Pnθ0

N(0, σ2(θ0)), and lim infn→∞ Pnθ0+φn
(Tn ≤

θ0 + φn) ≤ 1/2.
Then σ2(θ0) ≥ 1

I(θ0) .

Theorem. Suppose LAN holds at θ0. Let Tn be a

sequence of rv’s, such that Tn
d→Gh under Pnθ0+hφn

, ∀h
fixed. Then Gh

d
= F (Z,U) where Z ∼ N(h, I(θ0)−1),

U ∼ U(0, 1). Also Z and U are independent, and F is a
non-random measurable function free of h.

Theorem. Suppose LAN holds at θ0. Let ψn be a
sequence of asymptotically level α tests for θ = θ0 vs.
θ > θ0 i.e. lim supn→∞ Eθ0ψn ≤ α. Then ∀h > 0,
lim
n→∞

supEθ0+hφnψn ≤ 1− Φ(z1−α − h/
√
I(θ0)).

Pf: On subsequence, lim supEθ0+hrnφn = limEθ0+hrnk
φnk . On

further subsequence, (φn,
dPθ0+hrn
dPθ0

)
d→
Pθ0

(V,R) by jt. tightness.

∴ φn
d→

Pθ0+hrn

V (h) (le Cam). By thm, V (h) = F (Z,U), Z ∼

N(h,H(θ0)−1), U ∼ U(0, 1). Also Eθ0+hrnφn → EF (U, V ) (UI),

so Eh=0F (Z,U) ≤ α. Now compare F (U, V ) to MP test �

Remark. A test that achieves this bound is locally
asymptotically optimal.

Lemma. (i) Given a real-valued r.v X, there is a non-

random measurable function F such that X
d
= F (U),

U ∼ U(0, 1).
(ii) Given real-valued r.v.s (X,Y ), there is non-random

measurable F s.t. (X,Y )
d
= (X,F (X,U)), and X ⊥ U .

PROJECTIONS
Def (Projection). Let (Ω,F , P ) be a prob space. Let
L2 be the vector space of all r.v.’s X in this space such
that EX2 < ∞. X̂ is the the projection of X ∈ L2 onto
the sub-vector space S if
(i) X̂ ∈ S
(ii) E(X − X̂)2 ≤ E(X − Y )2,∀Y ∈ S.

Prop. (i) X̂ ∈ S is a projection iff E(X − X̂)Y = 0,
∀Y ∈ S.
(ii) Projection, if it exists, is unique.
(iii) If 1 ∈ S, then Var(T̂ ) ≤ Var(T ) and E(T̂ ) = E(T )

Def. S is closed if {Yn}n≥1 ∈ S and E(Yn − Y )2 → 0
implies Y ∈ S.

Prop. If S is closed, then a projection exists.

Remark. Let S be the space of all X such that EX2 <∞
and X is G-measurable, where G ⊆ F . Then X̂ = E[X|G].

Lemma (Hájek Projection). Let X1, ..., Xn be in-
dependent, and let S be the set of all rv’s of the form∑n
j=1 gj(Xj) where Egj(Xj)

2 < ∞ (equivalently those

of the form
∑n
i=1 Yj , where EY 2

j < ∞, Yj is Xj-
measurable).
If T ∈ L2, its projection is T̂ =

∑n
i=1 E(T |Xi)−(n−1)ET .

Remark. In general E[T |Xj ] will depend on j. How-
ever, if T is symmetric in (X1, · · · , Xn), and (X1, · · · , Xn)
are independent, then E[T |Xj ] does not depend on j, i.e.
E[T |Xj ] = g(Xj), for some function g free of j.

Thm. Let (Ωn,Fn, Pn) be a prob space for each n, and
let Sn, with 1 ∈ Sn, be a subspace of L2(Ωn,Fn, Pn) for
each n. Suppose Tn ∈ L2 has a projection T̂n, such that
Var(Tn)

Var(T̂n)
→

n→∞
1. Then Tn−ETn√

Var(Tn)
− T̂n−ET̂n√

Var(T̂n)

L2/p→
n→∞

0.

Setup (U-Stats). Suppose (X1, · · · , Xn) are iid cts rvs
on X . Let h : X k → R be a measurable function. Want
to estimate θ := Eh(X1, · · · , Xk), and h(X1, · · · , Xk) is

an unbiased estimator.
Define U := E[h(X1, · · · , Xk)|X(1), · · · , X(n)]. Then
EU = θ and V ar(U) ≤ V ar(h(X1, · · · , Xk)) as U is a
projection (or by Rao-Blackwell).
WLOG assume h is symmetric in its arguments,
so that U = 1

(nk)

∑
1≤l1<···<lk≤n h(Xl1 , · · · , Xlk) =

1

(nk)

∑
i∈[(nk)]

h(Xi).

Prop. (i) EU = θ.

(ii) V ar(U) =
∑k
c=1

(
k
c

)(
n−k
k−c
)
ξc/
(
n
k

)
, where

ξc = Cov(h(Xi1 , · · · , Xik), h(Xj1 , · · · , Xjk)), where
|{i1, · · · , ik} ∩ {j1, · · · , jk}| = c.

Remark. If ξ1 6= 0, V ar(U) ∼ k(n−kk−1)
(nk)

ξ1 ∼ k2

n ξ1, since(
n
r

)
∼ nr

r! for r fixed, n→∞.

Thm. If Eh2(X1, · · · , Xk) < ∞, then
√
n(Un − θ)

d→
n→∞

N(0, k2ξ1), provided ξ1 6= 0. Moreover:
• The Hájek projection of Un − θ is Ûn = k

n

∑n
i=1 g(Xi),

where g(x) = E[h(x,X2, · · · , Xk)− θ].
• Var(g(X1)) = ξ1.

Setup (2-sample U stats). Suppose X1, · · · , Xm
iid∼ F

and Y1, · · · , Yn
iid∼ G.

Let Um,n = 1

(mr )(ns)

∑
i∈[(mr )],j∈[(ns)]

h(Xi, Yj), where h :

X r × Ys → R. Also assume h is symmetric be-
tween X variables with Y fixed, and viceversa, i.e.
h(Xπ(i), Yπ(j)) = h(Xi, Yj). We assume N = m+ n → ∞
s.t. m

N → λ, n
N → 1 − λ, for some λ ∈ (0, 1). Let

θ = Eh(Xi, Yj).

Thm. If Eh2(Xi, Yj) <∞, then
√
N(Um,n − θ)

d→ N(0, r
2

λ ξ1,0 + s2

1−λξ0,1), where ξ1,0 =
Cov(h(Xi, Yj), h(Xi′ , Yj′)), where |i ∩ i′| = 1, |j ∩ j′| = 0.
• The Hájek projection of Um,n − θ is

Ûm,n = r
m

∑m
i=1 g1,0(Xi) + s

n

∑n
j=1 g0,1(Yj), where

g1,0(x) = Eh(x,X2, · · · , Xr, Y1, · · · , Ys)− θ,
g0,1(y) = Eh(X1, · · · , Xr, y, Y2, · · · , Ys)− θ.
• Var(g1,0(X1)) = ξ1,0, Var(g0,1(Y1)) = ξ0,1

DISTRIBUTIONAL RESULTS
• B(α, β) = Γ(α)Γ(β)

Γ(α+β)

• Γ(α+ 1) = αΓ(α)

• Γ(k) = (k − 1)!, for k ∈ Z+.

• Γ( 1
2 ) =

√
π

• If an → a, then (1 + an
n )n → ea



• If X ≥ 0, then E[X] =
∫∞

0
P (X > x)dx

• Suppose Xi ∼ N(θ, σ2):
- E(

∑
Xi) = nθ

- E(
∑
X2
i ) = nσ2 + nθ2

- E((
∑
Xi)

2) = n2σ2 + n2θ2

- (n− 1)S2 =
∑

(Xi −X)2 ∼ σ2χ2
n−1

- X−µ√
S2/n

∼ tn−1

- E( 1∑
X2
i

) = 1
σ2(n−2)

- MLE is (X, 1
n

∑
(Xi −X)2)

• Def (Sample variance). s2 := 1
n−1

∑
(xi − x)2

•
∑

(xi − x)2 =
∑
x2
i − nx2

•
∑

(Xi − µ)2 = n(X − µ)2 +
∑

(Xi −X)2

• Var(
∑
iXi) =

∑
i Var(Xi) + 2

∑
i<j Cov(Xi, Xj)

• χ2
k = Gamma(α = k

2 , β = 1
2 )

• Exp(λ) = Gamma(α = 1, β = λ)

• If U ∼ U(0, 1), then − log(U) = Exp(1)

• If Xi
iid∼ U(0, θ), then n(1− X(n)

θ )
d→ Exp(1). In partic-

ular, X(n)
p→ θ.

• If Xi
iid∼ Bin(1, θ/n), then

∑n
i=1Xi

d→ Poisson(θ).

• If Xn ∼ Bin(n, pn) and npn → λ, then Xn
d→ Pois(λ)

• If X ∼ P0(λ) and Y ∼ P0(µ) independently, then
X + Y ∼ P0(λ+ µ)

• If X ∼ Gamma(α, θ) and Y ∼ Gamma(β, θ) in-
dependently, then X + Y ∼ Gamma(α + β, θ), and
X

X+Y ∼ Beta(α, β).

• If X ∼ Gamma(α, β), then σX ∼ Gamma(α, β/σ).

• If X1, X2
iid∼ N(θ, 1),

then X1|{X1 +X2 = t} ∼ N(t/2, 1/2).

• If X1, · · · , Xn
iid∼ N(θ, 1), T =

∑
Xi, then

(X1, · · · , Xn|T = t) ∼ N(

t/n...
t/n

 ,

1− 1
n − 1

n · · ·
− 1
n 1− 1

n · · ·
· · · · · · · · ·

)

• If X ∼ Pois(λ), Y ∼ Pois(µ) independently, then
X|{X + Y = t} ∼ Bin(t, λ

λ+µ ).

• MVN (Multi-variate normal). If X ∼ N(µ,Σ), then
- f(x) = (2π|det Σ|)−n/2 exp(− 1

2 (x− µ)TΣ−1(x− µ)).

- EevtX = ev
tµ+ 1

2vtΣv.

• In particular, in the bivariate case with correlation ρ,
f(x, y) = 1

2πσXσY
√

1−ρ2
×

exp
(
− 1

2(1−ρ2)

[
(x−µxσx

)2 − 2ρ(x−µxσX
)(y−µUσY

) + (y−µYσY
)2
])

• In the standardized case with correlation ρ, (i.e. X,Y ∼
N(0, 1), EXY = ρ), we have Y = ρX+

√
1− ρ2Z, where

Z ⊥ X.

• If U ∼ N(0, 1) and V ∼ χ2
p independently, then

U√
V/p
∼ tp

• If U ∼ χ2
p and V ∼ χ2

q independently, then
U/p
V/q ∼ Fp,q

Order Statistics. If X1, · · · , Xn
iid∼ f(x), then

• fX(j)
(x) = n!

(j−1)!(n−j)!f(x)F (x)j−1(1− F (x))n−j

• FX(j)
(x) =

∑n
k=j

(
n
k

)
F (x)k(1− F (x))n−k

• fX(i),X(j)
(u, v) = n!

(i−1)!(j−1−i)!(n−j)! × f(u)f(v)×
F (u)i−1(F (v)−F (u))j−1−i(1−F (v))n−j , for u < v, i < j
• fX(1),··· ,X(n)

(x) = n!f(x1) · · · f(xn), for x1 < · · · < xn

• If U1, · · · , Un
iid∼ U [0, 1], then U(k) ∼ Beta(k, n− k + 1)

• The conditional distribution of X(i)|X(j) = t is that of
the ith order statistic from j − 1 samples of the original
distribution truncated at t.
• (X1|X(n) = t)

d
= 1

nδt + n−1
n U(0, t) (HW2 Q4)

• Order statistics are independent of rank statistics

Propn (Asymptotic distribution of ordered statis-
tics). If X1, ..., Xn are i.i.d from continuous strictly
positive density f , then, for p ∈ (0, 1),
√
n(X(dnpe) − F−1(p))

D−→ N
(

0, p(1−p)
fX(F−1(p))2

)
• If X1, · · · , Xn have continuous cdf F , then
F (X1), · · · , F (Xn) ∼ U [0, 1], and if U1, · · · , Un ∼ U [0, 1],

then F−1(U1), · · · , F−1(Un)
d
= X1, · · · , Xn.

• If X1, · · · , Xn
iid∼ N(θ, σ2) and θ ∼ N(µ, τ2), then

- θ|X ∼ N(µσ
2+nτ2X
σ2+nτ2 , σ2τ2

σ2+nτ2 )

- X ∼ N(µ1, σ2In + τ211T ) (marginally) (HW3 q5)

• If X1, · · · , Xn ∼ B(1, p) and p ∼ B(
√
n/2,

√
n/2), then

δ(X) =
∑
Xi+
√
n/2

n+
√
n

is the unique Bayes estimator. It has

constant risk 1
4(1+

√
n)2 , so it’s unique minimax and L.F.

• MLE for Normal, Poisson, and Bernoulli is X̄. For
uniform it is X(n).

• Cauchy Distribution verifies conditions A3 and A4.

• If X is negative binomial (r, p), and Y = 2pX, then

Y
d→ χ2

2r as p→ 0.

• If X ∼ Gamma(α, β) and Y ∼ Poisson(xβ), then
P (X ≤ x) = P (Y ≥ α).

• If X ∼ Bin(m, p), Y ∼ Bin(n, p) independently, then

P (X = k|X + Y = t) =
(mk )( n

t−k)
(m+n

t )
(HyperGeometric)

INEQUALITIES

Triangle:
∣∣∣||x|| − ||y||∣∣∣ ≤ ||x+ y|| ≤ ||x||+ ||y||

• ||f ||p =
( ∫
|f |pdµ

) 1
p or ||X||p =

(
E|X|p

) 1
p are norms

Holder’s: Suppose p, q ∈ [1,∞] s.t. 1
p + 1

q = 1. Then

||fg||1 ≤ ||f ||q||g||p. In particular,

•
∫
|f(x)g(x)|dx ≤

(∫
|f(x)|pdx

) 1
p
(∫
|g(x)|qdx

) 1
q

• E|XY | ≤ (E|X|p)1/p(E|Y |q)1/q

Cauchy-Schwarz. Setting p = q = 2 in Holder’s,
• E|XY | ≤

√
EX2EY 2

• Cov(X,Y )2 ≤ V ar(X)V ar(Y ), with = iff Y = aX + b

Pinsker’s: ||P −Q||TV ≤
√

2DKL(P ||Q).

Markov’s: P (|X| ≥M) ≤ E|X|
M

Jensen’s: Under UNBIASEDNESS.

Cosh. cosh(x) = ex+e−x

2 ≤ ex2/2

Log. log(1 + x) ≤ x− x2

2 if x ≥ 0 (Taylor expansion)

• log(1 + x) ≤ x− 2x
2

2 if x ≥ −0.5

• log(1 +x) ≥ x− x2

2 + x3

4 iff x ∈ [0, 0.45...] (≤ elsewhere)

• log(1 +x) ≥ x− x2

2 + x3

2 iff x ∈ [−0.43, 0] (≤ elsewhere)

MISCELLANEOUS
Sterling’s Approx. n! ∼

√
2πn

(
n
e

)n
.

O notation.
• f(x) = o(g(x)) as x→∞ iff |f(x)|

g(x) → 0 as x→∞.

• Xn = op(an) if Xn/an
p−→ 0.

• f(x) = O(g(x)) as x → ∞ iff ∃xo,M such that
|f(x)| < Mg(x) for all x > x0.
• Xn = Op(an) if Xn/an is stochastically bounded, i.e.
∀ε > 0 ∃M,N s.t. P (|Xn| ≥Man) < ε for all n ≥ N .

Thm (joint convergence).

• Suppose Xn
p−→ X and Yn

p−→ Y . Then (Xn, Yn)
p−→

(X,Y ).



• Suppose Xn
D−→ X and Yn

D−→ Y , and Xn is independent

of Yn for all n. Then (Xn, Yn)
D−→ (X,Y ).

• (Xn, Yn)
d→ (X,Y ) iff ∀k1, k2 ∈ R, k1Xn + k2Yn

d→
k1X + k2Y . Xn

d−→ X iff 〈t,Xn〉
d−→ 〈t,X〉,∀t ∈ Rd.

Thm (Cts. Mapping). If f is cts. and Xn → X, then
f(Xn)→ f(X) (holds for convergence a.s., in P or in D)

Thm (Continuous Mapping). Let g be a function,
such that the set of discontinuity points has prob. mea-
sure 0. Then
• Xn → X implies g(Xn) → g(X) for convergence in
distribution, prob. and a.s. respectively.

Def (Lp convergence). Xn
Lp→ X if E|Xn −X|p → 0

• For s ≥ r ≥ 1, Xn
Ls→ X =⇒ Xn

Lr→ X (Jensen’s)

• For p ≥ 1, Xn
Lp→ X =⇒ X

p→ X

• If Xn is UI and X
p→ X, then Xn

L1→ X

• If Xn
Lp→ X, then EXp

n → EXp (reverse ∆ inequality)

Uniform Integrability. A sequence (Xn)n≥1 is UI if
∀ε > 0,∃M > 0 s.t. supn≥1 E|Xn|I(|Xn|>M) < ε

• If Xn
D−→ X and supn≥1 E[|Xn|1+δ] <∞ for some δ > 0,

then EXn → EX.

Tightness. We say {Vn}n≥1 is tight if given ε > 0,
∃Kε <∞ such that P (Vn ∈ [−Kε,Kε]) ≥ 1− ε, ∀n ≥ 1.
Alternatively, supn≥1 P (|Vn| > M)→ 0 as M →∞.
Also written as Vn = Op(1) or ‘bounded in probability’.
• Marginal tightness implies joint tightness. This in turn
implies convergence in distribution along a subsequence.

• If Xn
d−→ X, then {Xn}n≥1 is tight.

• If {Xn}n≥1 is UI, then {Xn}n≥1 is tight.

Def (Xn)n≥1 is bounded in Lp for p ≥ 1 if
supn≥1 E[|Xn|p] <∞.
• For p ≥ 1, this implies tightness.
• For p > 1, this implies UI. (Counterexample for p = 1;
Xn = nI(0, 1/n]). Conversely, UI =⇒ bounded in L1

(but NOT bounded in Lp for p > 1).

Prohorov’s thm. If Vn is tight, there exists a subse-
quence along which it converges in distribution.

Lagrange Multipliers. Let f : Rd → R, h =
(h1, · · · , hk)T , hi : Rd → R, f, h ∈ C1. Let L(x, λ) =
f(x)− 〈λ, h(x)〉. If ∃(x∗, λ∗) s.t.
i) L(x∗, λ∗) = maxx∈Rd L(x, λ∗)
ii) h(x∗) = 0
Then x∗ maximizes f(x) subject to h(x) = 0. Therefore:
1. Maximize L(x, λ) in x to find x∗(λ).

2. Find λ∗ s.t. x∗(λ∗) satisfies h(x∗) = 0.

KKT. Consider maxx∈Rd f(x) subject to h(x) = 0
and g(x) ≤ 0, g = (g1, · · · , gm)T gi ≤ 0. Let
L(x, λ, µ) = f(x) − 〈µ, g(x)〉 − 〈λ, h(x)〉. If x∗ is a
solution, ∃λ∗, µ∗ s.t.
Stationarity: ∇L(x∗, λ∗, µ∗) = 0
Primal feasibility: gi(x

∗) ≤ 0, hi(x
∗) = 0

Dual feasibility: µ∗i ≥ 0
Complementary slackness: µ∗i gi(x

∗) = 0

KKT (sufficiency). Consider:
(∗) minx∈Rd f(x) s.t. g(x) ≤ 0 and h(x) = 0.
Let L(x, λ, µ) = f(x) + 〈λ, h(x)〉+ 〈µ, g(x)〉.
Suppose ∃(x∗, λ∗, µ∗) s.t. g(x∗) ≤ 0, h(x∗) = 0, µ∗ ≥ 0,
〈µ∗, g(x∗)〉 = 0 and L(x∗, λ∗, µ∗) = minx∈Rd L(x, λ∗, µ∗).
Then x∗ solves (∗). Therefore:
1. Minimize L(x, λ, µ) in x to find x∗(λ, µ).
2. Maximize L(x∗(λ, µ), λ, µ) over µ ≥ 0 to find µ∗(λ).
3. Find λ∗ s.t. h(x∗(λ∗, µ∗(λ∗))) = 0.
4. Check 〈µ∗, g(x∗)〉 = 0 (automatic for ‘nice’ convex
problems).

KKT (inequalities only). Consider:
(∗) minx∈Rd f(x) s.t. g(x) ≤ 0.
Let L(x, µ) = f(x) + 〈µ, g(x)〉.
Suppose ∃(x∗, µ∗) s.t. g(x∗) ≤ 0, µ∗ ≥ 0, 〈µ∗, g(x∗)〉 = 0
and L(x∗, µ∗) = minx∈Rd L(x, µ∗).
Then x∗ solves (∗). Therefore:
1. Minimize L(x, µ) in x to find x∗(µ).
2. Maximize L(x∗(µ), µ) over µ ≥ 0 to find µ∗.
3. Check 〈µ∗, g(x∗(µ∗))〉 = 0.

Def (compactness). A set K is compact if every open
cover has a finite subcover.
Usually: closed and bounded.

Def (Characteristic function). φX(u) = Eei〈u,X〉

Cumulant generating function: log(EetX)
• If it exists, it is convex and infinitely differentiable.

Weighted loss. If L(g(θ), δ(X)) = w(θ)(δ(X) − g(θ))2,

the Bayes estimator is δ0(X) = E[θw(θ)|X]
E[w(θ)|X] .

An admissible estimator w.r.t sq. err. is also admissible
w.r.t. weighted loss.

Absolute error loss. If L(g(θ), δ(X)) = |δ(X)− g(θ)|2,
the Bayes estimator is δ0(X) = median(θ|X).

0-1 loss. If L(g(θ), δ(X)) = I(δ(X) 6= g(θ)), the Bayes
estimator is δ0(X) = mode(θ|X).

Scaled/shifted Bayes/minimax. If δ(X) is

Bayes/minimax for g(θ), then aδ(X)+b is Bayes/minimax
for ag(θ) + b.

• Under sq. err. loss, aX + b is inadmissible for EX if:
- a > 1 (dominated by X)
- a < 0 (dominated by − b

a−1 )
- a = 1, b 6= 0 (dominated by X)

Cochran’s Thm. Suppose Z ∼ N(0,Σ) and Σ2 = Σ.
Then ZTZ ∼ χ2

tr(Σ) = χ2
r(Σ).

Convexity characterizations. f is convex iff
f(λx+ (1−λ)y) ≤ λf(x) + (1−λ)f(y), ∀x, y, ∀λ ∈ (0, 1)

iff f(x2)−f(x1)
x2−x1

≤ f(x3)−f(x2)
x3−x2

, ∀x1 < x2 < x3

iff f(x2)−f(x1)
x2−x1

≤ f(x3)−f(x1)
x3−x1

, ∀x1 < x2 < x3

Lyapunov CLT. Suppose X1, X2, · · · are independent
with means µi and variances σ2

i . Let s2
n =

∑n
i=1 σ

2
i . If, for

some δ > 0, limn→∞
1

s2+δ
n

∑n
i=1E|Xi − µi|2+δ = 0 (Lya-

punov’s condition). Then 1
sn

∑n
i=1(Xi − µi)

d→ N(0, 1).

Binomial theorem. (x+ y)n =
∑n
i=0

(
n
i

)
xiyn−i

Sherman-Morrison (Woodbury) formula.

(A+ uvT )−1 = A−1 − A−1uvTA−1

1+vTA−1u
.

U stats. h(x, y) = 1
2 (x−y)2 =⇒ Un = 1

n−1

∑
(Xi−X)2

RANDOM FACTS FROM EXERCISES
•
∑n
i=1 i

2 = 1
6n(n+ 1)(2n+ 1)

• Let α > 0. Then xα log(x)→ 0 as x→ 0+.

• Let P (Xi = ±1) = 1
2 , Sn =

∑n
i=1Xi.

Then EeλSn = (cosh(λ))n and P (|Sn| > nt) ≤ 2e−nt
2/2

• Suppose Pn,β(Yi = yi) = 1
Zn(β) exp( β

n−1

∑
1≤i<j≤n yiyj).

Then Zn(β)
2n → exp(−β2 )(1− β)−

1
2 (HW4 Q2)

Also
√
nY

d→
Pn,β

N(0, 1
1−β ) (HW4 Q3)

• Suppose X ∼ pθ, Θ0 ⊆ Θ1, δ0(X) is unique UMVUE
for θ ∈ Θ0, and Θ1 also has a UMVUE, and Θ0, Θ1 have
the same null sets. If δ0 is unbiased for Θ1, then δ0 is
also a UMVUE for θ ∈ Θ1 (midterm 1).

TAYLOR SERIES
• ex =

∑∞
k=0

xk

k! = 1 + x+ x2

2! + · · ·

• log(1 + x) =
∑∞
k=0(−1)k+1 xk

k = x− x2

2 + ... for |x| < 1

• sin(x) =
∑∞
k=0

(−1)k

(2k+1)!x
2k+1 = x− x3

3! + x5

5! + · · ·

• cos(x) =
∑∞
k=0

(−1)k

(2k)! x
2k = 1− x2

2! + x4

4! + · · ·


