Distribution	p.d.f.	mean	variance	C.F.	F. Info	M.S/C.S	UMVUE	Prior	Posterior
$\mathrm{Normal}(\theta,\sigma^2)$	$\frac{1}{\sqrt{2\pi\sigma^2}}\exp\left(-\frac{(x-\theta)^2}{2\sigma^2}\right)$	θ	σ^2	$\exp(i\theta t - \frac{1}{2}\sigma^2 t^2)$	$\begin{pmatrix} \sigma^{-2} & 0 \\ 0 & \frac{1}{2}\sigma^{-4} \end{pmatrix}$	$(\sum X_i, \sum X_i^2)$	$(\bar{X}, \frac{\sum (X_i - \bar{X})^2}{n-1})$	$\theta \sim N(\mu, \tau^2)$	$N(\frac{\frac{\mu}{\tau^2} + \frac{n\bar{x}}{\sigma^2}}{\frac{1}{\tau^2} + \frac{n}{\sigma^2}}, \frac{1}{\frac{1}{\tau^2} + \frac{n}{\sigma^2}})$
$\operatorname{Poisson}(\lambda)$	$\lambda^x e^{-\lambda}/x!$	λ	λ	$\exp(\lambda(e^{it}-1))$	λ^{-1}	$\sum X_i$	$ar{X}$	$\Gamma(lpha,eta)$	$\Gamma(\alpha + \sum x_i, \beta + n)$
Binomial(n, p)	$\binom{n}{x}p^x(1-p)^{n-x}$	np	np(1-p)	$(1 - p + pe^{it})^n$	$\frac{n}{p(1-p)}$	X or $\sum X_i$	\bar{X} or X/n	$\mathrm{Beta}(\alpha,\beta)$	$\alpha + \sum x_i, \beta + n - \sum x_i$
$\operatorname{Gamma}(\alpha,\beta)$	$\frac{\beta^{\alpha}}{\Gamma(\alpha)}x^{\alpha-1}e^{-\beta x}$	α/β	$\frac{\alpha}{\beta^2}$	$(1-\frac{it}{\beta})^{-\alpha}$	-			$\Gamma(lpha_0,eta_0)$	$\alpha_0 + n\alpha, \beta_0 + \sum x_i$
$\mathrm{Beta}(\alpha,\beta)$	$\frac{1}{B(\alpha,\beta)}x^{\alpha-1}(1-x)^{\beta-1}$	$\frac{\alpha}{(\alpha+\beta)}$	$\frac{\alpha\beta}{(\alpha+\beta)^2(\alpha+\beta+1)}$	-	-				
$\mathrm{Uniform}(\theta)$	$\frac{1}{\theta} \mathbb{I}_{x \in (0,\theta)}$	$rac{1}{2} heta$	$\frac{1}{12}\theta^2$	$\frac{e^{it\theta}-1}{it\theta}$		$X_{(n)}$	$\frac{n+1}{n}X_{(n)}$	$\mathrm{Pa}(\alpha,c)$	$Pa(\alpha + n, max(x_{(n)}, c))$
$\operatorname{Uniform}(a,b)$	$\tfrac{1}{b-a}\mathbb{I}_{x\in(a,b)}$	$\frac{1}{2}(b+a)$	$\frac{1}{12}(b-a)^2$	$\frac{e^{itb} - e^{ita}}{it(b-a)}$					
$\mathrm{U}\{1,\cdots,N\}$	$\frac{1}{N}\mathbb{I}_{x\in\{1,\cdots,N\}}$	$\frac{N+1}{2}$	$\frac{(N+1)(N-1)}{12}$						
Pareto (α, x_m)	$\frac{\alpha x_m^{\alpha}}{x^{\alpha+1}}, \ x \ge x_m$	$\frac{\alpha x_m}{\alpha - 1}$	$\frac{x_m^2\alpha}{(\alpha-1)^2(\alpha-2)}$	-	$\begin{pmatrix} \frac{\alpha}{x_m^2} & -\frac{1}{x_m} \\ -\frac{1}{x_m} & \frac{1}{\alpha^2} \end{pmatrix}$				
NB(r, p)	$\binom{x+r-1}{x}(1-p)^r p^x$	$\frac{pr}{1-p}$	$\frac{pr}{(1-p)^2}$	$\left(\frac{1-p}{1-pe^{it}}\right)^r$	$\frac{r}{(1-p)^2p}$	$\sum X_i$			
Geom(p)	$(1-p)^{x-1}p$	$\frac{1}{p}$	$\frac{1-p}{p^2}$	$\frac{pe^{it}}{1 - (1 - p)e^{it}}$					
Inv. $\Gamma(\alpha, \beta)$	$\frac{\beta^{\alpha}}{\Gamma(\alpha)}x^{-\alpha-1}\exp(-\frac{\beta}{x})$	$\frac{\beta}{\alpha-1}$	$\frac{\beta^2}{(\alpha-1)^2(\alpha-2)}$	If	$X \sim \Gamma(\alpha, \beta)$	Then	$\frac{1}{X} \stackrel{D}{=} Y$	where	$Y \sim \text{Inv. } \Gamma(\alpha, \beta)$
Cauchy (x_0, γ)	$\frac{1}{\pi\gamma[1+(\frac{x-x_0}{\gamma})^2]}$	NA	NA	$\exp(x_0it - \gamma t)$					
Weibull (λ, k)	$\frac{k}{\lambda} \left(\frac{x}{\lambda}\right)^{k-1} e^{(x/\lambda)^k}$	$\lambda\Gamma(rac{k+1}{k})$	σ^2 where	$\sigma^2 = \lambda^2 [\Gamma(1 +$	$2/k) - (\Gamma(1+1/k))^2$	$\mathrm{cdf} =$	$1 - e^{-(x/\lambda)^k}$		
HyperGeom	$\frac{\binom{K}{k}\binom{N-K}{n-k}}{\binom{N}{n}}$	$n rac{K}{N}$	$n\frac{K}{N}\frac{N-K}{N}\frac{N-n}{N-1}$						

UNBIASEDNESS

Setup. Consider a set of probability measures $\{P_{\theta}, \theta \in \Theta\}$ on a sample space $(\mathcal{X}, \mathcal{F})$, dominated by a σ 0finite measure (this assumption holds throughout, unless explicitly stated). Observe $X \sim P_{\theta}$ for some $\theta \in \Theta$, and infer θ . Let $L(\theta, \delta(X))$, be the loss function from estimating θ with $\delta(X)$.

Def (Dominate in measure). We say P dominates Q if $P(A) = 0 \implies Q(A) = 0$, $\forall A \in \mathcal{F}$.

Def (Risk fn). $R(\theta, \delta) = \mathbb{E}_{\theta}[L(\theta, \delta(\mathbf{X}))].$

Def (Unbiased). An estimator $\delta(\mathbf{X})$ is unbiased for $g(\theta)$ if $\mathbb{E}_{\theta}\delta(X) = g(\theta)$, $\forall \theta \in \Theta$.

Def (Minimax). An estimator δ_0 is minimax for estimating $g(\theta)$ if, for all other estimators δ , $\sup_{\theta \in \Theta} R(g(\theta), \delta_0) \leq \sup_{\theta \in \Theta} R(g(\theta), \delta)$. The minimax risk of any estimator δ is $\sup_{\theta \in \Theta} R(g(\theta), \delta)$.

Def (Bayes Risk). Under a prior model $\theta \sim \pi(\theta)$. $r(\pi, \delta) = \mathbb{E}_{\theta \sim \pi}[R(\theta, \delta)] = \mathbb{E}[L(\theta, \delta(\mathbf{X}))].$

Def (Statistic). A measurable function $T: (\mathcal{X}, \mathcal{F}) \to (\mathbb{R}^k, \mathcal{B})$.

Def (Sufficient) A statistic T is called sufficient for θ (or for $\{P_{\theta}, \theta \in \Theta\}$) if the conditional distribution of X|T is independent of θ .

Thm (Neyman-Fisher Factorization Criterion). Suppose $\{P_{\theta}, \theta \in \Theta\}$ is a collection of probability measures on $(\mathcal{X}, \mathcal{F})$, which are dominated by a σ -finite measure γ . Let $X \sim P_{\theta}$ for some $\theta \in \Theta$. Then T is sufficient for θ iff $p_{\theta}(x) = g_{\theta}(T(x))h(x)$ a.s. γ , for some g_{θ} , h, where $p_{\theta}(\cdot) = dP_{\theta}/d\gamma$.

Def (Exp. Fam.) $\{P_{\theta}, \theta \in \Theta\}$ (dominated by σ -finite

measure) is said to form a k-dimensional exponential family if the corresponding pdfs are of the form $p_{\theta}(x) = \exp\{\sum_{i=1}^k \eta_i(\theta) T_i(x) - B(\theta)\}h(x),$

where $h, T_1, \dots, T_j : \mathcal{X} \to \mathbb{R}$ and $B, \eta_1, \dots, \eta_k : \Theta \to \mathbb{R}$.

Def (Support). The support of a density is the set where the density is strictly positive.

Thm (Pitman-Koopman-Darmois). Suppose $X_1, ..., X_n$ are iid with density $\{p_{\theta}, \theta \in \Theta\}$, which are continuous in x for fixed θ and supported on an interval $I \subseteq \mathbb{R}$. Suppose there exists a sufficient statistic (T_1, \dots, T_k) with continuous components.

(i) If k = 1, then $p_{\theta}(x) = e^{\eta(\theta)T(x) - B(\theta)}h(x)$.

(ii) If n > k > 1, and $x \mapsto p_{\theta}(x)$ is C^1 , then $p_{\theta}(x) = \exp\{\sum_{i=1}^k \eta_i(\theta) T_i(x) - B(\theta)\} h(x)$.

Def (M.S.). Let S be sufficient for θ . S is Minimal Sufficient if, given any other sufficient statistic T, there exists a measurable fn. h s.t. S(x) = h(T(x)) a.s. P_{θ} , $\forall \theta \in \Theta$.

Thm (Bahadur). Let $X \sim P_{\theta}, \theta \in \Theta$ be an \mathbb{R}^n -valued RV. Then a MS statistic exists.

Thm (M.S.). If $\Theta_0 = \{\theta_0, ..., \theta_k\}$ and p_θ have common support $I \subseteq \mathcal{X}$, then $T(x) = \left(\frac{p_{\theta_1}(X)}{p_{\theta_0}(X)}, ..., \frac{p_{\theta_k}(X)}{p_{\theta_0}(X)}\right)$ is M.S.

Thm (M.S.). Let $\{P_{\theta}: \theta \in \Theta\}$ be a collection of dominated probability measures with common support, and $\Theta_0 \subseteq \Theta$. If T is sufficient for $\{P_{\theta}: \theta \in \Theta\}$, and M.S for $\{P_{\theta}: \theta \in \Theta_0\}$, then T is M.S for $\{P_{\theta}: \theta \in \Theta\}$.

Thm (Lehman-Scheffe Partitions). Suppose T(x) = T(y) iff the ratio $p_{\theta}(x)/p_{\theta}(y)$ is independent of θ . Then T is M.S.

Rigorous formulation: Suppose $\{P_{\theta}: \theta \in \Theta\}$ is a dominated by a σ -finite measure ν . Suppose T(x) = T(y) iff $\exists \alpha, \beta > 0$ (depending on x, y) s.t. $\alpha p_{\theta}(x) = \beta p_{\theta}(y), \forall \theta$. Then T is M.S.

Thm (M.S. for Exp. Fam.). Let $\{P_{\theta}, \theta \in \Theta\}$ be an exponential family of the form

 $p_{\theta}(x) = \exp\{\sum_{i=1}^{k} \eta_{i}(\theta) T_{i}(x) - B(\theta)\} h(x), \text{ and let } \overline{\eta} = \{(\eta_{1}(\theta), ..., \eta_{k}(\theta)) : \theta \in \Theta\} \subseteq \mathbb{R}^{k}.$

(a) If $\exists \mathbf{v_0}, \mathbf{v_1}, \cdots, \mathbf{v_k} \in \overline{\eta} \text{ s.t. } \{\mathbf{v_1} - \mathbf{v_0}, \cdots, \mathbf{v_k} - \mathbf{v_0}\}$ are lin. indep., then (T_1, \cdots, T_k) is M.S.

(b) If $(\overline{\eta})^0 \neq \emptyset$, then (T_1, \dots, T_k) is M.S.

Def (C.S.) A suff. stat. T is **complete** for θ if $\mathbb{E}_{\theta} f(T) = 0, \forall \theta \in \Theta \implies f(T) = 0 \text{ a.s. } P_{\theta}, \forall \theta.$

Lemma (MGF). If $\mathbb{E}e^{tX} = \mathbb{E}e^{tY}, \forall t \in (-\delta, \delta)$, then $X \stackrel{D}{=} Y$.

Thm (C.S. for Exp. Fam.). In the previous setting, if $(\overline{\eta})^0 \neq \emptyset$, then $(T_1, ..., T_k)$ is C.S.

Thm (C.S. & M.S.). If \exists a CS statistic T and \exists an MS statistic U, then T is M.S. (and U C.S.).

Def (Ancillary). A statistic S is ancillary for θ if the distribution of S is free of θ .

Thm (Basu). If T is C.S and V is ancillary, then T and V are independent (under $P_{\theta}, \forall \theta \in \Theta$).

Def. $\mathcal{U} = \{U : \mathcal{X} \to \mathbb{R} : \mathbb{E}_{\theta}U(X)^2 < \infty, \mathbb{E}_{\theta}U(X) = 0, \forall \theta \in \Theta\}$

 $\Delta = \{\delta : \mathcal{X} \to \mathbb{R} : \mathbb{E}_{\theta} \delta(X) = g(\theta), \operatorname{Var}(\delta(X)) < \infty \}.$ Note if $\Delta \neq \emptyset$, then $\mathcal{U} + \delta = \Delta, \forall \delta \in \Delta$.

Def (UMVUE). An estimator $\delta_0 \in \Delta$ is UMVUE if, $\forall \delta \in \Delta$, $\operatorname{Var}_{\theta} \delta_0(X) \leq \operatorname{Var}_{\theta} \delta(X), \forall \theta \in \Theta$.

Thm. δ_0 is UMVUE iff $\mathbb{E}_{\theta}\delta_0(X)U(X) = 0, \forall U \in \mathcal{U}$.

Def (Convexity). $C \subseteq \mathbb{R}^k$ is convex if $x \in C, y \in C \implies \alpha x + (1 - \alpha)y \in C, \forall \alpha \in (0, 1)$. A function $f: C \to \mathbb{R}$ is convex if $f(\alpha x + (1 - \alpha)y) \le \alpha f(x) + (1 - \alpha)f(y), \forall x, y \in C$ and $\alpha \in (0, 1)$. Change to < for strictly convex.

Remark. If $\nabla \phi$ exist, then ϕ is convex iff $\phi(y) \ge \phi(x) + (y-x)^T \nabla \phi(x), \forall x \ne y$ (> for strictly convex). If ϕ is twice differentiable, then ϕ is (strictly) convex if $H = \left[\frac{\partial^2 \phi}{\partial x_i \partial x_j}\right]_{i,j}$ exists and is +ve (semi)definite.

Thm (Jensen's Inequality). Let $\phi: I \to \mathbb{R}$ be convex, where $I \subseteq \mathbb{R}$ is an interval.

- (a) If $\mathbb{E}|X| < \infty$, then $\mathbb{E}\phi(x) \ge \phi(\mathbb{E}X)$.
- (b) If ϕ is strictly convex, strict inequality holds above, unless $X = \mathbb{E} X$ a.s.

Note this also holds for conditional expectations

Thm (Rao-Blackwell). Let T be sufficient for θ . (a) If $\delta(X)$ is unbiased for $g(\theta)$ and $a \mapsto L(g(\theta), a)$ is convex, then $\eta(T) = \mathbb{E}_{\theta}[\delta(X)|T]$ is unbiased and $R(g(\theta), \eta(T)) \leq R(g(\theta), \delta(X)), \forall \theta \in \Theta$.

(b) If δ_0 is unbiased and has finite risk $\forall \theta$, and $a \mapsto L(g(\theta), a)$ is strictly convex, then $R(g(\theta), \eta(T)) < R(g(\theta), \delta(X)), \forall \theta$, unless δ is a function of T a.s. $P_{\theta}, \forall \theta \in \Theta$.

Corollary (UMVUE) If $\delta(X)$ is an unbiased estimate of $g(\theta)$ and T is C.S., then $\mathbb{E}_{\theta}[\delta(X)|T]$ is the UMVUE.

Defn (Score func). For $\Theta = \mathbb{R}^k$, $\mathbf{S} = (\partial_{\theta_1} \log p_{\theta}(X), \dots, \partial_{\theta_k} \log p_{\theta}(X))^T$.

Defn (Fisher Info). $I(\theta) = \mathbb{E}_{\theta}(\partial_{\theta} \log p_{\theta}(X))^{2}$. On \mathbb{R}^{k} , $I(\theta) = [\mathbb{E}_{\theta}(\partial_{\theta_{i}} \log p_{\theta}(X))(\partial_{\theta_{j}} \log p_{\theta}(X))]_{i,j}$.

Remark. If $\eta = \tau(\theta)$: $\tau \in C^1, \tau'(\theta) \neq 0$, then $I(\tau(\theta)) = I(\theta)/\tau'(\theta)^2$.

On \mathbb{R}^k , the information matrix is +ve semi-definite (symmetry is obvious) because $I(\theta) = \mathbb{E}[\mathbf{SS}^T]$.

Thm (CRLB/Information Inequality). Suppose (a) $\Theta \subseteq \mathbb{R}$ is an open interval.

- (b) $\{p_{\theta}(x), \theta \in \Theta\}$ have common support.
- (c) $p'_{\theta}(x) = \frac{\partial}{\partial \theta} p_{\theta}(x)$ exists and is finite for all x and θ .
- (d) $\partial_{\theta} \int_{\mathcal{X}} p_{\theta}(x) d\mu = \int_{\mathcal{X}} \partial_{\theta} p_{\theta}(x) d\mu$.

Let $\delta(X)$ be an estimator s.t. $\mathbb{E}[\delta(X)^2] < \infty$, and $I(\theta) \in (0,\infty)$, and $\int_{\mathcal{X}} \delta(x) \partial_{\theta} p_{\theta}(x) d\mu = \partial_{\theta} \int_{\mathcal{X}} \delta(x) p_{\theta}(x) d\mu$. Then $\operatorname{Var}(\delta(X)) \geq [\partial_{\theta} \mathbb{E}\delta(X)]^2 / I(\theta)$.

(this is just $g'(\theta)^2/I(\theta)$ for unbiased estimators).

Remark. If equality holds, $p_{\theta}(x)$ is a 1-parameter exp. fam. and $\delta(X)$ is the natural sufficient stat.

Lemma (Fisher info). Assume (a) - (d) and $I(\theta) < \infty$. Then $I(\theta) = \text{Var}(\partial_{\theta} \log(p_{\theta}(x)))$.

If, in addition, $p''_{\theta}(x)$ exists $\forall \theta, x$, and $\partial_{\theta}^{2} \int p_{\theta}(x) d\mu = \int \partial_{\theta}^{2} p_{\theta}(x) d\mu$, then $I(\theta) = -\mathbb{E}[\partial_{\theta}^{2} \log(p_{\theta}(X))]$.

Thm. Let $p_{\theta}(x) = e^{\eta(\theta)T(x)-B(\theta)}h(x)$ and $\theta \in \Theta$, an open interval. Let $\tau(\theta) = \mathbb{E}_{\theta}[T(X)]$, and assume T is not constant. Then

- (a) $\tau'(\theta) \neq 0$ and $I(\tau(\theta)) = 1/\operatorname{Var}_{\theta}(T)$.
- (b) $I(h(\theta)) = [\eta'(\theta)/h'(\theta)]^2 \operatorname{Var}_{\theta}(T)$.

Propn (regularity of exp. fam.). Let μ be a σ -finite measure on \mathcal{X} and $t_1, \dots, t_n : \mathcal{X} \to \mathbb{R}$. Define $G(\theta_1, \dots, \theta_n) = \int_{\mathcal{X}} \exp\{\sum \theta_i t_i(x)\} h(x) d\mu$, and $\Omega = \{\theta : G(\theta_1, \dots, \theta_n) < \infty\}$. Then

- (a) Ω is convex and $\theta \mapsto \log G(\theta)$ is convex on Ω .
- (b) Let Ω_0 be the interior of Ω and assume $\Omega_0 \neq \emptyset$. Then, on Θ_0 , $\theta \mapsto G(\theta)$ is infinitely differentiable and the derivatives can be taken inside the integral, e.g. $\partial_{\theta_i} G = \int_{\mathcal{X}} t_i(x) \exp\{\sum \theta_i t_i(x)\} h(x) d\mu$.

Remark. Similar conclusions hold with the normalizing constant $e^{-B(\theta)}$. Moreover, $B(\theta) \in \mathcal{C}^{\infty}$.

Remark. For a general function $\eta: \Omega \to \mathbb{R}$, all conclusions hold at $\theta = \theta_0$, provided $\eta(\theta_0)$ is an interior point if $\overline{\eta} = \{\eta: \int e^{\eta t(x)} h(x) d\mu < \infty\}$ and $\eta \in \mathcal{C}^{\infty}$.

Propn. If $p_n(x) = e^{\sum_{i=1}^k \eta_i T_i(x) - A(\eta)} h(x)$, and $\eta \in \overline{\eta}$,

- $E_{\eta}(T_j) = \frac{\partial}{\partial n_i} A(\eta)$
- $Cov_{\eta}(T_j, T_k) = \frac{\partial^2}{\partial n_i \partial n_k} A(\eta)$.

If $p_{\theta}(x) = \exp\{\sum_{i=1}^{k} \eta_i(\theta) T_i(x) - B(\theta)\} h(x), \ \eta(\theta_0) \in \overline{\eta},$

- If k = 1, then $E_{\theta_0}(T(X)) = B'(\theta_0)/\eta'(\theta_0)$ and $Var(T(X)) = \frac{B''(\theta)}{\eta'(\theta)^2} \frac{\eta''(\theta)B'(\theta)}{\eta'(\theta)^3}$.
- If k > 1, then $E_{\theta}(T(X)) = J^{-1}\nabla B$, where $J = \{\frac{\partial \eta_j}{\partial \theta_i}\}_{ij}$ and $\nabla B = \{\frac{\partial}{\partial \theta_i}B(\theta)\}_i$.

Propn (regularity of the estimator). Let $\delta(X)$ be an estimator s.t. $\operatorname{Var}(\delta(X)) < \infty$. Then $\partial_{\theta} \int \delta(x) p_{\theta}(x) d\mu = \int \delta(X) \partial_{\theta} p_{\theta}(x) d\mu$, at any $\theta_0 \in (\Omega)^0$, provided $\exists b(x)$ s.t. $|\frac{P_{\theta_0+h}(x)-p_{\theta_0}(x)}{hp_{\theta_0}(x)}| \leq b(x)$ for all sufficiently small h, and $\int b(x) |\delta(x)| p_{\theta}(x) d\mu < \infty$ (in particular, this will hold if $\mathbb{E}_{\theta_0}[b(X)^2] < \infty$, by Cauchy-Schwarz).

Propn (regularity of estimator in exp. fam.). Let $p_{\theta}(x) = e^{\eta(\theta)t(x)-B(\theta)}h(x)$ and $\eta \in \mathcal{C}^{\infty}$ (so that $B \in C^{\infty}$). If $\delta(X)$ is an estimator with $\mathrm{Var}(\delta(X)) < \infty$, then $\partial_{\theta} \int \delta(x)p_{\theta}(x)d\mu = \int \delta(x)\partial_{\theta}p_{\theta}(x)d\mu$.

Thm (Multi-parameter CRLB). Suppose

- (a) $\Theta \subseteq \mathbb{R}^k$ is an open set.
- (b) $\{p_{\theta}(x), \theta \in \Theta\}$ have common support.
- (c) $\partial_{\theta_i} p_{\theta}(x)$ exists, $\forall i, x, \theta$, and is finite.
- (d) $\partial_{\theta_i} \int_{\mathcal{X}} p_{\theta}(x) d\mu = \int_{\mathcal{X}} \partial_{\theta_i} p_{\theta}(x) d\mu$.
- (e) $\partial_{\theta_i} \int_{\mathcal{X}} \delta(x) p_{\theta}(x) d\mu = \int_{\mathcal{X}} \delta(x) \partial_{\theta_i} p_{\theta}(x) d\mu$.
- (f) $I(\theta)$ is finite and +ve definite.

Then we have $\operatorname{Var}(\delta(X)) \geq \alpha^T I(\theta)^{-1} \alpha$, where $\alpha_i = \partial_{\theta_i} \mathbb{E}_{\theta} \delta(X)$. In particular, if $\delta(X)$ is unbiased for $g(\theta)$, $\alpha_i = \partial_{\theta_i} g(\theta)$.

AVERAGE RISK OPTIMALITY

Setup. Suppose $\{P_{\theta}, \theta \in \Theta\}$ is a collection of probability measures on \mathcal{X} dominated by a σ -finite measure μ . Assume now that θ is a random variable on Θ , with prior distn. π . Suppose we want to estimate $g(\theta)$. The risk function is still $R(g(\theta), \delta) = \mathbb{E}_{X \sim P_{\theta}} L(g(\theta), \delta(X)) = \mathbb{E}[L(g(\theta), \delta(X))|\theta]$.

Def (Bayes risk) of δ : $r(\pi, \delta) = \mathbb{E}_{\theta \sim \pi}[R(g(\theta), \delta)]$

Def (Bayes estimator). δ_0 is a Bayes estimator if $r(\pi, \delta_0) \leq r(\pi, \delta)$ for any other estimator δ .

Def (Bayes risk of a Prior). $r(\pi) = \inf_{\delta}(r(\pi, \delta))$.

Remark. The joint distribution of (X, θ) is $p_{\theta}(x)\pi(\theta)$. The marginal distribution of X is $m(x) = \int_{\Theta} p_{\theta}(x)\pi(d\theta)$. The posterior distr. is $\pi(\theta|x) = p_{\theta}(x)\pi(\theta)/m(x) \propto p_{\theta}(x)\pi(\theta)$.

Thm (Bayes estimator for sq. err. loss). $L(g(\theta), \delta(X)) = (g(\theta) - \delta(X))^2$, and $\mathbb{E}[g(\theta)^2] < \infty$,

- (i) $\delta_0 = \mathbb{E}[g(\theta)|X]$ is a Bayes estimator with Bayes risk $\mathbb{E}[\text{Var}(g(\theta)|X)]$.
- (ii) If $\delta(X)$ is any other Bayes estimator, then $\delta_0(X) = \delta(X)$ a.s. under the joint distr. of (X, θ) .

Remark. (ii) also implies $\delta_0(X) = \delta(X)$ a.s. under the marginal of X. If the marginal dominates the conditional, this will further imply that $\delta_0(X) = \delta(X)$ a.s. $P_{\theta}, \forall \theta \in \Theta$, i.e. we have uniqueness under the conditionals.

Lemma (Bias of Bayes estimator). Under squared error loss, a Bayes estimator cannot be unbiased, unless $\delta(X) = g(\theta)$ a.s.

Def (Conjugate Prior). A non-trivial class of probability distributions F is called a conjugate family of priors for a model $\{P_{\theta} : \theta \in \Theta\}$ if the posterior distribution $\pi(\theta|x)$ also belongs to F.

Example. For $p_{\theta}(x) = \exp\{\sum_{i=1}^{k} \eta_{i}(\theta)T_{i}(x) - B(\theta)\}h(x)$, the conjugate family is $\pi(\theta) = \exp\{\sum_{i=1}^{k} s_{i}\eta_{i}(\theta) - s_{0}B(\theta)\}\psi(s_{0},...,s_{k})$

Def (least favourable). A prior π is least favourable if, for all other distributions π' on Θ , $r(\pi) \geq r(\pi')$. A sequence of priors $\{\pi_n\}_{n\geq 1}$ is least favourable if $\lim_{n\to\infty} r(\pi_n) = \sup_{\pi} r(\pi)$.

Thm (minimax from Bayes). Suppose π is a distribution on Θ with Bayes estimator δ_{π} , s.t. $r(\pi) = r(\pi, \delta_{\pi}) = \sup_{\theta \in \Theta} R(g(\theta), \delta_{\pi})$. Then:

- (a) δ_{π} is minimax
- (b) If δ_{π} is the unique (w.r.t. the conditionals) Bayes estimate w.r.t. π , then δ_{π} is unique minimax.
- (c) π is least favourable.

Corollary. A Bayes estimator with constant risk is minimax.

Thm (minimax from L.F.). Suppose $\{\pi_n\}_{n\geq 1}$ is a sequence of priors s.t. $\lim_{n\to\infty} r(\pi_n) = \sup_{\theta\in\Theta} R(g(\theta), \delta_0)$ for some estimate δ_0 . Then:

- (a) δ_0 is minimax.
- (b) $\{\pi_n\}_{n\geq 1}$ is least favourable.

Lemma (minimax on subset). Suppose $\delta(X)$ is minimax for $g(\theta)$ on the parameter set $\Theta_0 \subseteq \Theta$. If $\sup_{\theta \in \Theta_0} R(g(\theta), \delta) = \sup_{\theta \in \Theta} R(g(\theta), \delta)$, then δ is minimax for $\theta \in \Theta$.

Def (Admissible). An estimator δ is *inadmissible* if

 $\exists \delta'$ s.t. $R(g(\theta), \delta') \leq R(g(\theta, \delta))$, with strict inequality for some $\theta \in \Theta$. Otherwise, δ is admissible.

Remark. If the loss is strictly convex, any estimator which is not a function of the M.S. statistic is inadmissible (Rao-Blackwell).

Lemma. If the loss is strictly convex, δ is admissible and $R(g(\theta), \delta) = R(g(\theta), \delta'), \forall \theta \in \Theta$, then $\delta = \delta'$ a.s. $P_{\theta}, \forall \theta \in \Theta$.

Lemma. Any unique (w.r.t. the conditionals) Bayes estimator is admissible.

Lemma. An admissible estimator with constant risk is minimax. If the loss function is strictly convex, it is also *unique* minimax.

Lemma. If δ is unique minimax, then δ is admissible.

Thm (Karlin). Suppose $\{P_{\theta}, \theta \in \Theta\}$ is a one-parameter exponential family $p_{\theta}(x) = e^{\theta T(x) - B(\theta)} h(x)$, for $\theta \in (a, b)$ (possibly unbounded). Let $\delta_{\lambda, \nu}(X) = \frac{1}{1+\lambda}T(X) + \frac{\nu\lambda}{1+\lambda}, \lambda \geq 0, \nu \in \mathbb{R}$. If $\exists \theta_0 \in \Theta$ s.t. $\int_a^{\theta_0} e^{-\nu\lambda\theta + \lambda B(\theta)} d\theta = \int_{\theta_0}^b e^{-\nu\lambda\theta + \lambda B(\theta)} d\theta = \infty$, then $\delta(X)$ is admissible for estimating $g(\theta) = \mathbb{E}_{\theta}T(X)$, w.r.t squared error loss.

Corollary If $(a,b)=(-\infty,\infty)$, then T is admissible for $\mathbb{E}_{\theta}T.$

Def (improper prior). A measure π on the parameter space Θ s.t. $\pi(\Theta) = \infty$.

If $m(x) := \int_{\Theta} p_{\theta}(x) \pi(d\theta) < \infty, \forall x \in \mathcal{X}$, we can define a probability measure $\pi(\cdot|x)$ on Θ by $\pi(A|x) = \int_{A} p_{\theta}(x) \pi(d\theta) / m(x)$.

Def (generalized Bayes estimate). A minimizer of $\int_{\Theta \times \mathcal{X}} L(g(\theta), \delta(x)) p_{\theta}(x) \pi(d\theta) d\mu$, where π is an improper prior.

Thm (generalized Bayes estimate). If $m(x) < \infty, \forall x$, a generalized Bayes estimate, w.r.t squared error, is the posterior mean $\int_{\Theta} g(\theta) \pi(\mathrm{d}\theta|x)$, provided $\int_{\Theta} g(\theta)^2 \pi(\mathrm{d}\theta) < \infty$.

Remark (Jeffrey's Prior). One common "vague"/improper prior is $\pi(\theta) \propto \sqrt{I(\theta)}$. In the multiparameter case, $\pi(\theta) \propto \sqrt{\det(I(\theta))}$

Def (hierarchical Bayes). The prior distribution on the parameter θ has a hyper-parameter, λ , which itself has a hyper-prior. We have, $X|\theta \sim p_{\theta}(x)$, $\theta|\lambda \sim \pi_{\lambda}(\theta)$, $\lambda \sim \psi(\lambda)$.

Thm. Writing $\pi(\theta) = \int \pi_{\lambda}(\theta) \psi(\lambda) d\lambda$, we have that $D(\pi(\theta|x)||\pi(\theta)) \ge D(\psi(\lambda|x)||\psi(\lambda)).$ (HW5 q5)

Def (K-L divergence).

 $D(P||Q) = \int p(x) \log \frac{p(x)}{q(x)} dx.$

Remark. It always exists and is ≥ 0 (maybe = infinity), with equality iff p = q.

Def (empirical Bayes estimate). Assume the hyperparameter λ is now fixed. An estimator derived from the posterior $\theta | x$ (e.g. the posterior mean) now also depends on λ . Substituting λ with a non-trivial estimator of λ derived from the marginal of X yields an *empirical Bayes* estimate for θ .

James Stein Estimator. Let $g(\mathbf{x}) = \frac{(n-2)\sigma^2}{||\mathbf{x}||_2^2}\mathbf{x}$. Then $\delta_{JS} = \mathbf{x} - g(\mathbf{x})$ and has a uniformly better risk than the UMVUE estimator ($\delta = \mathbf{x}$) for $n \geq 3$. (HW5 Q2)

ASYMPTOTIC OPTIMALITY

Setup. Consider a candidate estimator $\delta_n(X_1,...,X_n)$ for estimating $q(\theta)$.

Def (Consistency). $\delta_n(X)$ is consistent for $g(\theta)$ if $\delta_n(X) \xrightarrow{p} g(\theta)$, under $P_\theta \ \forall \theta \in \Theta$.

Def (Likelihood). $L(\theta|\mathbf{X}) = \prod_{i=1}^n p_{\theta}(X_i)$. If $\eta = g(\theta)$, the likelihood of η is $\tilde{L}(\eta|\mathbf{X}) = \sup_{\theta: q(\theta) = \eta} L(\theta|\mathbf{X})$.

Def (MLE). If there exists a unique $\hat{\theta}_n$ which is a global maximizer of $\theta \mapsto L(\theta|\mathbf{X})$, then $\hat{\theta}_n$ is the MLE.

Def (Asymptotic efficiency). for a sequence of estimators $\tilde{\theta}_n$: $\sqrt{n}(\tilde{\theta}_n - \theta_0) \xrightarrow{\mathcal{D}} N(0, I(\theta_0)^{-1})$

Def (Tightness). A sequence of RVs $\{Y_n\}_{n\geq 1}$ is tight if $\forall \epsilon > 0$, $\exists K_{\epsilon} < \infty$ s.t. $\sup_{m > 1} P(|Y_n| > K_{\epsilon}) \le \epsilon$.

Thm. If $Y_n \xrightarrow{\mathcal{D}} Y$, then $\{Y_n\}_{n\geq 1}$ is tight.

Def (\sqrt{n} -consistent). An estimator $\tilde{\theta}_n$ is \sqrt{n} -consistent for θ if $\sqrt{n}(\hat{\theta}_n - \theta_0)$ is tight under $P_{\theta_0}, \forall \theta_0 \in \Theta$.

Thm. If $\tilde{\theta}_n$ is \sqrt{n} -consistent for θ , then $\tilde{\theta}_n \stackrel{p}{\to} \theta$.

Asymptotic Risk Thm (MLE) $X_1,...,X_n \stackrel{iid}{\sim} P_{\theta}, \theta \in$ Θ , with pdf $p_{\theta}(\cdot)$. Consider the hypotheses:

- (A0) Identifiability: $P_{\theta_1} \neq P_{\theta_2}$ whenever $\theta_1 \neq \theta_2$.
- (A1) $\{p_{\theta}(\cdot), \theta \in \Theta\}$ have common support.
- (A2) $\Theta \subseteq \mathbb{R}$ and θ_0 is an interior point of Θ .

(A3) The function $\theta \mapsto p_{\theta}(x)$ is 3 times differen-

tiable and $\sup_{\theta \in [\theta_0 - \delta, \theta_0 + \delta]} |\partial_{\theta}^3 \log p_{\theta}(x)| \leq M(x)$, with $\mathbb{E}_{\theta_0}[M(X_1)] < \infty$, for some $\delta > 0$.

(A4) $\theta \mapsto \int_{\mathcal{X}} p_{\theta}(x) d\mu(x)$ can be differentiated twice through the integral. Further, $0 < I(\theta_0) < \infty$. $(A2^*)$ Θ is an open interval.

(A3*) The map $\theta \mapsto p_{\theta}(x)$ is \mathcal{C}^2 $\sup_{\theta \in [\theta_0 - \delta, \theta_0 + \delta]} |\partial_{\theta}^2 \log p_{\theta}(x)| \leq M(x)$, with $\mathbb{E}[M(X_1)] < 0$ ∞ , for some $\delta > 0$.

- Under A0 and A1, $P_{\theta_0}(l_n(\theta_0|\mathbf{X}) > l_n(\theta|\mathbf{X})) \to 1$ as $n \to \infty, \forall \theta \neq \theta_0.$
- Under A0 and A1, if Θ is finite, the MLE $\hat{\theta}_n$ exists with high probability (i.e. the probability that the likelihood function has a unique maximizer goes to 1), and $P_{\theta_0}(\hat{\theta}_n = \theta_0) \to 1 \text{ as } n \to \infty.$
- Under A0-2, if $\theta \mapsto p_{\theta}(x)$ is \mathcal{C}^1 (differentiable with continuous derivative), there exists a sequence of roots θ_n of the likelihood equation $l'_n(\theta) = 0$ which is consistent for θ_0 (though $\hat{\theta}_n$ depends on θ_0 so is not an estimator).
- Under A0-2, if $\theta \mapsto p_{\theta}(x)$ is differentiable and the likelihood equation $l'_n(\theta) = 0$ has a unique root $\hat{\theta}_n$, then $\hat{\theta}_n \xrightarrow{p} \theta_0$ under P_{θ_0} , and $\hat{\theta}_n$ is the MLE w.h.p.
- (Asymptotic normality of MLE). Under A0-4, for any consistent sequence of roots $\hat{\theta}_n$ of $l'_n(\theta) = 0$, we have $\sqrt{n}(\hat{\theta}_n - \theta_0) \xrightarrow{\mathcal{D}} N(0, I(\theta_0)^{-1}).$
- Under A0, A1, A4, A2* and A3*, if $\sqrt{n}(\hat{\theta}_n \theta_0) \xrightarrow{\mathcal{D}}$ $N(0, V(\theta_0))$, then the set $\{\theta : V(\theta) < I(\theta_0)^{-1}\}$ has Lebesgue measure 0.
- Under A0-4, if $\tilde{\theta}_n$ is \sqrt{n} -consistent for θ , then $\delta_n := \tilde{\theta}_n - l'_n(\tilde{\theta}_n)/l''_n(\tilde{\theta}_n)$ is asymptotically efficient.

Remark. $\frac{l'_n(\theta_0)}{\sqrt{n}} \xrightarrow{\mathcal{D}} N(0, I(\theta_0), \frac{l''_n(\theta_0)}{n} \xrightarrow{p} -I(\theta_0),$ $\left|\frac{l_n'''(\xi_n)}{n}\right| \leq \frac{1}{n} \sum M(X_i) \xrightarrow{p} EM(X_1) < \infty$ where $\xi_n \in (\theta_0, \hat{\theta}_n).$

Propn. If the MLE is consistent and conditions A0 through A4 hold, then the MLE is asymptotically efficient (HW6 Q6).

Example (Exp. Fam.). Let $p_{\theta}(x) = e^{\theta T(x) - B(\theta)} h(x)$. $\theta \in \Theta$, an open interval. Let $l_n(\theta) = \log \prod p_{\theta}(x_i)$. Then $l_n''(\theta) = -nB''(\theta) = -n\operatorname{Var}(T(X)) < 0$, so $\theta \to l_n(\theta)$ is strictly concave so $l'_n(\theta) = 0$ can have at most 1 root.

Thm (Slutsky). Suppose $X_n \xrightarrow{\mathcal{D}} X$, $A_n \xrightarrow{p} a$, $B_n \xrightarrow{p} b$. Then $A_n X_n + B_n \xrightarrow{\mathcal{D}} aX + b$.

Thm (Invariance of MLE). (a) If $\hat{\theta}$ is a global maximizer of $\theta \mapsto L(\theta|\mathbf{X})$, then $\hat{\eta} = q(\hat{\theta})$ is a global maximizer

of $\eta \mapsto \tilde{L}(\eta | \mathbf{X})$.

(b) If $\hat{\theta}$ is the MLE and $\forall \eta$, $|\{\theta: g(\theta) = \eta\}| < \infty$, then $\hat{\eta}$ is the MLE for n.

Thm (Δ -Method). If $\sqrt{n}(X_n - \mu) \xrightarrow{\mathcal{D}} N(0, \sigma^2)$, and $g \in \mathcal{C}^1$ s.t. $g'(\mu) \neq 0$, then $\sqrt{n}(g(X_n) - g(\mu)) \xrightarrow{\mathcal{D}}$ $N(0, \sigma^2 g'(\mu)^2).$

Remark. Multivariate result holds $\sqrt{n}(g(X_n) - g(\mu)) \xrightarrow{\mathcal{D}}$ $N(0, \xi^T \Sigma \xi)$ where $\xi_i = \frac{\partial g}{\partial x_i}|_{x=\mu}$

Thm (Modified Δ -Method). If $\sqrt{n}(X_n - \mu) \stackrel{\mathcal{D}}{\longrightarrow}$ $N(0,\sigma^2)$, and $g \in \mathcal{C}^2$ s.t. $g'(\mu) = 0$, then $n(g(X_n)$ $g(\mu)$) $\xrightarrow{\mathcal{D}} \frac{\sigma^2}{2} g''(\mu) \chi_1^2$.

Thm (Uniform integrability). If $X_n \stackrel{\mathcal{D}}{\to} X$ and $\sup_{n\geq 1} \mathbb{E}[|X_n|^{1+\delta}] < \infty \text{ for some } \delta > 0, \text{ then } \mathbb{E}X_n \to \mathbb{E}X.$

Thm (Multivariate CLT for MLE). Under A0, A1, and:

(A2) $\Theta \subseteq \mathbb{R}^p$ and $\theta_0 \in \Theta$ is an interior point.

(A3) The function $\theta \mapsto p_{\theta}(x)$ is 3 times partially differentiable and $\sup_{|\theta-\theta_0|_{2}<\delta} \left| \frac{\partial^3 \log p_{\theta}(x)}{\partial_{\theta_i}\partial_{\theta_i}\partial_{\theta_k}} \right| \leq M_{ijk}(x)$, where $\mathbb{E}_{\theta_0} M_{ijk}(\mathbf{X}) < \infty, \forall i, j, k.$

(A4) $\mathbb{E}_{\theta_0} \partial_{\theta_i} \log p_{\theta}(X) = 0$ and

 $\mathbb{E}_{\theta_0} \left[\frac{\partial \log p_{\theta}(X)}{\partial \theta_i} \frac{\partial \log p_{\theta}(X)}{\partial \theta_j} \right] = -\mathbb{E}_{\theta_0} \left[\frac{\partial^2 \log p_{\theta}(X)}{\partial \theta_i \partial \theta_j} \right] = I_{ij}(\theta_0),$ with the matrix $I(\theta_0)$ finite and +ve definite.

- Then there exists a consistent sequence of roots of the likelihood equation $\frac{\partial \log p_{\theta}(x)}{\partial \theta_i} = 0, 1 \leq i \leq p.$
- Further, this sequence is asymptotically efficient, i.e. $\sqrt{n}(\hat{\theta}_n - \theta_0) \xrightarrow{\mathcal{D}} N(\mathbf{0}, I(\theta_0)^{-1}).$

HYPOTHESIS TESTING

Setup. Let $\{P_{\theta}, \theta \in \Theta\}$ be a collection of probability measures on \mathcal{X} dominated by a σ -finite measure μ . Let $p_{\theta}(\cdot) = \frac{dP_{\theta}}{du}$. Let Θ_0 and Θ_1 be disjoint subsets of Θ . Given $X \sim P_{\theta}$ for some $\theta \in \Theta$, we want to test whether $\theta \in \Theta_0$ or $\theta \in \Theta_1$.

Def (Test function). A function $\phi: \mathcal{X} \to \{0,1\}$ is called a non-randomized test function.

Def. Types of errors of a test. If $\theta \in \Theta_0$, then $\phi = 1$ is Type I error. If $\theta \in \Theta_2$, then $\phi = 0$ is Type II error.

Def (Power). The power of a test ϕ is 1 - Probability of type II error; $\beta(\theta) = P_{\theta}(\phi = 1)$ for $\theta \in \Theta_1$, a function of **Def (Size).** The size of a test ϕ is $\sup_{\theta \in \Theta_0} P_{\theta}(\phi = 1)$. Let $\alpha \in (0,1)$. A test ϕ is called level α if $\sup_{\theta \in \Theta_0} P_{\theta}(\phi = 1) \leq \alpha$.

Def (UMP). A test ϕ is called uniformly most powerful level α if, given any other level α test ψ , we have $P_{\theta}(\phi = 1) \geq P_{\theta}(\phi = 1) \ \forall \theta \in \Theta_1$.

Def. A function $\phi: \mathcal{X} \to [0, 1]$ is called a randomized test function. If $\phi = p$, toss a coin w prob heads p. If heads choose Θ_1 , else Θ_0 . In all previous definitions, replace $P_{\theta}(\phi = 1)$ by $\mathbb{E}_{\theta}[\phi]$, and $P_{\theta}(\phi = 0)$ by $1 - \mathbb{E}_{\theta}[\phi]$.

Thm (NP lemma). Suppose we want to test $H_0: \theta = \theta_0$ vs $H_1: \theta = \theta_1$ at level α .

- (i) There exists a test ϕ satisfying
- . (a) $\mathbb{E}_{\theta_0}[\phi] = \alpha$
- . (b) There exists $k \in [0, \infty]$ such that

$$\phi(X) = 1 \text{ if } p_{\theta_1}(X) > kp_{\theta_0}(X)$$
$$= 0 \text{ if } p_{\theta_1}(X) < kp_{\theta_0}(X)$$

- (ii) If a test ϕ satisfies (a) and (b), then ϕ is a Most Powerful test for testing $\theta = \theta_0$ vs $\theta = \theta_1$.
- (iii) If ϕ is Most Powerful level α , it must satisfy (b) for some k. It also satisfies (a), unless $\mathbb{E}_{\theta_1}[\phi] = 1$, in which case $\mathbb{E}_{\theta_0}[\phi] \leq \alpha$.

Remark. If the boundary $\{X : p_{\theta_1}(X) = kp_{\theta_0}(X)\}$ has measure 0, then the MP test is unique.

Corollary. Let $\beta = \beta(\theta_1)$ denote the power of the MP test for testing $\theta = \theta_0$ vs $\theta = \theta_1$ at level $\alpha \in (0,1)$. Then $\beta \geq \alpha$. Further, $\beta > \alpha$ unless $p_{\theta_1} = p_{\theta_0}$.

Def (MLR). Suppose Θ is an interval (Keener only requires that $\Theta \subseteq \mathbb{R}$). We say that $\{p_{\theta}(\cdot), \theta \in \Theta\}$ have the Monotone Likelihood Ratio property in a statistic T(X), if $\forall \theta_1 < \theta_2 \in \Theta$, $p_{\theta_2}(x)/p_{\theta_1}(x)$ is a non-decreasing function of T(X).

Keener: Natural conventions concerning division by zero are used here, with the likelihood ratio interpreted as ∞ when $p_{\theta_2} > 0$ and $p_{\theta_1} = 0$. On the null set where both densities are zero the likelihood ratio is not defined and monotonic dependence on T is not required.

Thm. Let $\{p_{\theta}(\cdot), \theta \in \Theta\}$ be MLR in T(X), Θ an interval, and $p_{\theta_1} \neq p_{\theta_2}$ if $\theta_1 \neq \theta_2$.

(i) For testing $H_0: \theta \leq \theta_0$ vs $H_1: \theta > \theta_0$ at level $\alpha \in (0,1)$, there exists a UMP test ϕ of the form

$$\phi(X) = 1 \text{ if } T(X) > c$$

$$= \nu \text{ if } T(X) = c$$

$$= 0 \text{ if } T(X) < c,$$

and $\mathbb{E}_{\theta_0}\phi(X) = \alpha$.

- (ii) The power function $\beta(\theta) = \mathbb{E}_{\theta} \phi$ is strictly increasing on the set $\{\theta : 0 < \beta(\theta) < 1\}$.
- (iii) For all $\theta' \in \Theta$, the test of part (i) is UMP for testing $H_0: \theta \leq \theta'$ vs $H_1: \theta > \theta'$ at level $\alpha' = \beta(\theta')$.
- (iv) For any $\theta < \theta_0$, ϕ minimises $\beta(\theta)$ among all tests satisfying $\mathbb{E}_{\theta_0} \psi(X) = \alpha$.

Lemma. Let $\{p_{\theta}(.), \theta \in \Theta\}$ be MLR in T(X), and Θ an interval.

- (i) If $\psi : \mathbb{R} \to \mathbb{R}$ is non-decreasing, then so is $\theta \mapsto E_{\theta} \psi(T)$.
- (ii) If ψ has a simple change of sign, i.e. $\exists x_0 \in \mathbb{R}$ s.t

$$T(x) < x_0 \implies \psi(T(x)) \le 0$$

 $T(x) > x_0 \implies \psi(T(x)) \ge 0$

Then one of three things happen:

- a. $E_{\theta}\psi(T) \geq 0, \forall \theta \in \Theta$
- b. $E_{\theta}\psi(T) \leq 0, \forall \theta \in \Theta$
- c. $\exists \theta_0 \text{ s.t. } E_{\theta} \psi(T) \leq 0, \forall \theta < \theta_0, E_{\theta} \psi(T) \geq 0, \forall \theta > \theta_0.$
- (iii) Suppose $p_{\theta}(x) > 0, \forall x \in \mathcal{X}, \theta \in \Theta$ and the function $p_{\theta'}(x)/p_{\theta}(x)$ is strictly increasing in T(x) for $\theta' > \theta$.

Let ψ be as in (ii) and further assume $P_{\theta}(\psi(T) \neq 0) > 0$. If $E_{\theta_0}\psi(T) = 0$, then $E_{\theta}\psi(T) > 0$ for $\theta > \theta_0$, $E_{\theta}\psi(T) < 0$ for $\theta < \theta_0$.

Lemma. Assume $p_{\theta}(x) > 0, \forall \theta \in \Theta, x \in \mathcal{X}, \Theta$ an interval, and $p_{\theta'}(x)/p_{\theta}(x)$ is strictly increasing in $T(X), \forall \theta < \theta'$. Then there is a unique test function ϕ , which is a function of T, of the form:

$$\phi(X) = 1 \text{ if } T(X) \in (c_1, c_2)$$

= $\nu_i \text{ if } T(X) = c_i$
= 0 if $T(X) \notin [c_1, c_2]$

such that $E_{\theta_1}\phi = \alpha_1$ and $E_{\theta_2}\phi = \alpha_2$, for some $\theta_1 \neq \theta_2$, $\alpha_1, \alpha_2 \in (0, 1)$.

That is to say, if $\phi^*(X)$ is such that

$$\phi^*(X) = 1 \text{ if } T(X) \in (c_1^*, c_2^*)$$

$$= \nu_i^* \text{ if } T(X) = c_i^*$$

$$= 0 \text{ if } T(X) \notin [c_1^*, c_2^*]$$
and $E_{\theta_1} \phi^* = \alpha_1$ and $E_{\theta_2} \phi^* = \alpha_2$, then $\phi = \phi^*$ a.s.

Thm (Generalized NP). Let $f_1, ..., f_{m+1}$ be real-valued integrable functions w.r.t μ . Let $(c_1, ..., c_m) \in \mathbb{R}^m$ and set $\mathcal{C}_0 = \{\phi : \int \phi f_i d\mu = c_i, 1 \leq i \leq m, \phi \text{ is a test fn} \}$ and assume \mathcal{C}_0 is not empty.

- (i) Among all $\phi \in \mathcal{C}_0$, there exists a test ϕ_0 which maximizes $\int \phi f_{m+1} d\mu$.
- (ii) A sufficient condition for $\phi_0 \in \mathcal{C}_0$ to maximize $\int \phi f_{m+1} d\mu$ is that $\exists (K_1, ..., K_m)$ s.t.

$$\phi_0 = 1 \text{ if } f_{m+1} > K_1 f_1 + \dots + K_m f_m \ (*)$$

 $\phi_0 = 0 \text{ if } f_{m+1} < K_1 f_1 + ... + K_m f_m \ (*)$ (iii) If $\phi_0 \in \mathcal{C}_0$ satisfies (*) for some $K_1, ..., K_m \ge 0$, then

 ϕ_0 maximizes $\int \phi f_{m+1} d\mu$ among all tests ϕ satisfying $\int \phi f_i d\mu \leq c_i$, for $1 \leq i \leq m$.

(iv) The set $M = \{(\int \phi f_1 d\mu, ..., \int \phi f_m d\mu), \phi \text{ is a test fn}\}$, a subset of \mathbb{R}^m , is closed and convex. If $(c_1, ..., c_m)$ is an interior point of M, then $\exists K_1, ..., K_m$ and $\phi_0 \in \mathcal{C}_0$ such that (*) holds, and a necessary condition for $\phi_0 \in \mathcal{C}_0$ to maximize $\int \phi f_{m+1} d\mu$ is that (*) holds a.s. (for some K_1, \dots, K_m).

Propn. If ϕ is MP, and T is sufficient, then $\psi := \mathbb{E}[\phi|T]$ is MP for the same test.

Thm. Suppose we want to test $H_0: \theta \leq \theta_1$ or $\theta \geq \theta_1$ vs $H_1: \theta_1 < \theta < \theta_2$ at level α , where $X \sim p_{\theta}(x) = e^{\eta(\theta)T(x)-B(\theta)}h(x)$, and η strictly increasing.

(i) There exists a UMP test ϕ which satisfies:

$$\phi(X) = 1 \text{ if } c_1 < T < c_2$$

= ν_i if $T = c_i$
= 0 otherwise.

and $\mathbb{E}_{\theta_1} \phi = \mathbb{E}_{\theta_2} \phi = \alpha$.

(ii) Among all tests ψ satisfying $E_{\theta_1}\psi=E_{\theta_2}\psi=\alpha,\ \phi$ minimizes type I error $E_{\theta'}\psi$ for any $\theta'\leq\theta_1$ or $\theta'\geq\theta_2$.

Setup (Least Favorable π). Consider the problem of testing $H_0: \theta \in \Theta_0$ vs $H_1: \theta = \theta_1$. Let π be a distribution on Θ_0 and let $m(x) = \int_{\Theta_0} p_{\theta}(x) \pi(d\theta)$. Consider the modified problem $H'_0: X \sim m(\cdot)$ vs $H_1: X \sim p_{\theta_1}(\cdot)$. Let ϕ_{π} be the NP test (MP) at level α with power β_{π} .

Theorem. Assume ϕ_{π} is level α for the original problem. Then:

- (i) ϕ_{π} is MP for the original problem.
- (ii) If ϕ_{π} is unique MP for the modified problem, then ϕ_{π} is unique MP for the original problem.
- (iii) $\beta_{\pi} \leq \beta_{\pi'}, \forall \pi'$. (i.e π is least favorable).

Remark. To find a UMP under a composite null, use a Least Favourable Prior (including point masses)! (unless we can apply our standard MLR/exp. fam. results).

Def (p-value). Suppose we want to test H_0 vs H_1 at level α . Let ϕ_{α} be a non-randomized test function at level α . Let $S_{\alpha} = \{X : \phi_{\alpha}(X) = 1\}$ be the rejection region, and assume these are nested: $\alpha_1 < \alpha_2 \implies S_{\alpha_1} \subseteq S_{\alpha_2}$. The p-value is $\hat{p}(X) = \inf\{u : X \in S_u\}$.

Intuitively, given the *p*-value, you can construct a level α test by rejecting H_0 if $\hat{p}(X) < \alpha$, accepting otherwise.

Lemma. Suppose $X \sim p_{\theta}$ for some $\theta \in \Theta$, and we want to test $H_0: \theta \in \Theta_0$ vs $H_1: \theta \in \Theta_1$ at level α . Let $\{\phi_{\alpha}\}_{\alpha \in (0,1)}$ be a collection of nested level α tests.

(i) Then $P_{\theta}(\hat{p}(X) \leq u) \leq u, \forall u \in (0,1), \theta \in \Theta_0$

(ii) If $\exists \theta_0 \in \Theta_0$ such that $P_{\theta_0}(X \in S_\alpha) = \alpha, \forall \alpha$ then $P_{\theta_0}(\hat{p}(X) \leq u) = u.$

Def (Confidence Interval). Let $X \sim P_{\theta}$ for some $\theta \in \Theta$. For every $x \in \mathcal{X}$, let $\mathcal{S}(x)$ be a subset of Θ . We say the collection of sets $\{S(x), x \in \mathcal{X}\}$ is a $(1-\alpha)$ confidence region if $P_{\theta}(\theta \in \mathcal{S}(X)) \geq 1 - \alpha, \ \forall \theta \in \Theta.$ Assume $\Theta \subseteq \mathbb{R}$. If $S(x) = [l(x), \infty)$, then we call it a lower confidence interval. If $S(x) = (-\infty, u(x)]$, an upper CI. If S(x) = [l(x), u(x)], a 2-sided CI.

Remark. Suppose for every $\theta_0 \in \Theta$, ϕ_{θ_0} is a nonrandomized level α test for $H_0: \theta = \theta_0$ vs H_1 . Let $S(x) = \{\theta : \phi_{\theta}(X) = 0\}$. Then $\{S(x) : x \in \mathcal{X}\}$ is a $(1-\alpha)$ confidence region.

Remark (Asymptotic CI). In practice, suppose $\sqrt{n}(\hat{\theta}-\theta) \stackrel{d}{\to} N(0,V^2(\theta))$ where V is continuous. Then, by Slutsky's (and cts. mapping thm), $\sqrt{n} \frac{\hat{\theta} - \theta}{V(\hat{\theta})} \stackrel{d}{\to} N(0, 1)$, and therefore, $(\hat{\theta} - \frac{1}{\sqrt{n}} z_{1-\alpha/2} V(\hat{\theta}), \hat{\theta} + \frac{1}{\sqrt{n}} z_{1-\alpha/2} V(\hat{\theta}))$ is a $1 - \alpha$ C.I. for θ .

Def (Unbiased Test). Suppose we want to test $H_0: \theta \in \Theta_0 \text{ vs } H_1: \theta \in \Theta_1 \text{ at level } \alpha.$ We say a test ϕ is level α unbiased if

- (i) $\sup_{\theta \in \Theta_0} E_{\theta} \phi \leq \alpha$
- (ii) $\inf_{\theta \in \Theta_1} E_{\theta} \phi \geq \alpha$

Def (UMPU). We say ϕ is Uniformly Most Powerful Unbiased at level α , if ϕ is unbiased at level α and for any other unbiased test ψ , $E_{\theta}\phi \geq E_{\theta}\psi$, $\forall \theta \in \Theta_1$.

Remark. If ϕ is UMP, it is also UMPU.

Lemma (UMPU). Suppose $\{p_{\theta}, \theta \in \Theta\}$ is a collection of prob. measures, s.t. $\theta \mapsto E_{\theta} \phi$ is continuous in θ (metric on Θ implicit). If ϕ_0 is a test such that:

(i) ϕ_0 is UMP among the class of tests satisfying $E_{\theta}\phi = \alpha, \forall \theta \in \partial\Theta_0 \cap \partial\Theta_1$. $(\partial S = \text{boundary of } S)$.

(ii) ϕ_0 is level α for $\theta \in \Theta_0$.

Then ϕ_0 is UMPU for $\theta \in \Theta_0$ vs $\theta \in \Theta_1$ at level α .

Theorem. Let $X \sim p_{\theta}(x) = e^{\eta(\theta)T(x)-A(\theta)}h(x)$, η strictly increasing and continuous, and Θ an open interval. For the test $H_0: \theta \in [\theta_1, \theta_2]$ vs $H_1: \theta \notin [\theta_1, \theta_2]$, there exists a UMPU level α test ϕ given by:

$$\phi = 1$$
 if $T(X) \notin [c_1, c_2]$
 $= \nu_i$ if $T(X) = c_i$
 $= 0$ otherwise.
and $E_{\theta_1} \phi = E_{\theta_2} \phi = \alpha$.

Theorem. $X \sim p_{\theta}(x) = e^{\eta(\theta)T(x)-A(\theta)}h(x), \Theta$ is an open interval, $\eta \in \mathcal{C}^1$ and $\eta'(\theta) > 0$. We want to test $H_0: \theta = \theta_0 \text{ vs } H_1: \theta \neq \theta_0 \text{ at level } \alpha.$ There exists a UMPU of the form:

$$\phi = 1 \text{ if } T(X) \notin [c_1, c_2] \\
= \nu_i \text{ if } T(X) = c_i \\
= 0 \text{ if } T(X) \in (c_1, c_2), \\
\text{where } E_{\theta_0} \phi = \alpha \text{ and } E_{\theta_0} \{ \phi(X) T(X) \} = \alpha E_{\theta_0} \{ T(X) \}.$$

Lemma. Let $M = \{(E_{\theta_0}[\phi], E_{\theta_0}[\phi T]), \phi \text{ is a test fn}\} \subseteq$ \mathbb{R}^2 . Then for any $\alpha \in (0,1)$, $(\alpha, \alpha E_{\theta_0}T)$ is an interior point of M. (consider $\phi = \alpha \pm \varepsilon I(T > E_{\theta_0}T)$) (hw3 q3)

Lemma. Suppose ϕ is a test of the form

$$\phi = 1 \text{ if } T(x) > c$$

$$= \nu \text{ if } T(x) = c$$

$$= 0 \text{ if } T(x) < c$$

Then $E_{\theta_0}\phi = \alpha$ and $E_{\theta_0}\phi T = \alpha E_{\theta_0}T$ cannot hold simultaneously. (consider $(\phi - \alpha)(T - c) \ge 0$)

Lemma. There is at most one test of the form:

$$\phi = 1 \text{ if } T \notin [c_1, c_2]$$

$$= 0 \text{ if } T \in (c_1, c_2)$$

$$= \nu_i \text{ if } T = c_i$$
such that $E_{\theta_0} \phi = \alpha$, $E_{\theta_0} \phi T = \alpha E_{\theta_0} T$. (HW3 Q4)

Theorem. Suppose $X \sim$ $p_{\theta,n}(x)$ $_{
ho} \theta U(x) + \sum_{i=1}^{K} \eta_i T_i(x) - A(\theta, \eta) h(x)$ where $(\theta, \eta) \in \Theta \times \Omega$ is open. Suppose we want to test $H_0: \theta < \theta_0$ vs $H_1: \theta > \theta_0$ at level α . In this case, there exists a UMPU of the form

$$\begin{aligned} \phi &= 1 \text{ if } U > K(\mathbf{T}) \\ &= \nu(\mathbf{T}) \text{ if } U = K(\mathbf{T}) \\ &= 0 \text{ if } U < K(\mathbf{T}) \\ \text{where } E_{\theta_0,\eta}(\phi(U,\mathbf{T})|\mathbf{T}) = \alpha \text{ a.s.} \end{aligned}$$

Remark. The conditional distribution of U given T = t is an exponential family of the form $\tilde{p}(u|t) =$ $e^{\theta u - A_t(\theta)} h_t(u), \ \theta \in \Theta.$

Remark. Similarly, you can find UMPU in the exponential family $p_{\theta,\eta}(x) = \exp\{\theta U(x) + \sum_{i=1}^k \eta_i T_i(x) - \sum_{i=1}^k \eta_i T_i(x)\}$ $A(\theta, \eta) h(x)$ for these problems:

(ii) $H_0: \theta \notin (\theta_1, \theta_2) \text{ vs } H_1: \theta \in (\theta_1, \theta_2).$ (iii) $H_0: \theta \in [\theta_1, \theta_2]$ vs $H_1: \theta \notin [\theta_1, \theta_2]$. (take $\mathcal{C} = \{ \psi : E_{\theta_1,\eta}(\psi|T) = \alpha \text{ a.s.}, E_{\theta_2,\eta}(\psi|T) = \alpha \text{ a.s.} \}$)

(iv) $H_0: \theta = \theta_0 \text{ vs } H_1: \theta \neq \theta_0$

(take $\mathcal{C} = \{ \psi : E_{\theta_0,\eta}(\psi|T) = \alpha \text{ a.s.}, E_{\theta_0,\eta}(\psi U|T) = \alpha \}$ $\alpha E_{\theta_0}(\psi|T)$ a.s.})

Def (LRT). Suppose X_1, \dots, X_n are iid from $p_{\theta}(\cdot)$, and you want to test $H_0: \theta \in \Theta_0$ vs $H_1: \theta \in \Theta_1$. The LRT statistic is $\Lambda(X_1, \dots, X_n) = \frac{\sup_{\theta \in \Theta_0} p_{\theta}(X_1, \dots, X_n)}{\sup_{\theta \in \Theta_0} \bigcup_{\theta \in P} p_{\theta}(X_1, \dots, X_n)}$.

Remark. In many examples $-2\log\Lambda(X_1,\cdots,X_n)$ has an asymptotic χ^2 distribution with $\dim(\Theta_0 \cup \Theta_1)$ – $\dim(\Theta_0)$ degrees of freedom.

Thm (Wilks). Suppose A0-A4 hold, MLE is consistent, $\Theta \subseteq \mathbb{R}^k$ open. Suppose we want to test $H_0: \theta = \theta_0$ vs $H_1: \theta \neq \theta_0$. Then $-2\log \Lambda(X_1, \dots, X_n) \stackrel{d}{\rightarrow} \chi_k^2$

Wald's Test. $H_0: \theta = \theta_0 \text{ vs } H_1: \theta \neq \theta_0$, A0-A4 and

MLE consistent. Thus, $\sqrt{n}(\hat{\theta}_n - \theta_0) \stackrel{d}{\to} N(0, I(\theta_0)^{-1})$ under H_0 . Reject H_0 if $|\hat{\theta}_n - \theta_0| > \frac{z_{1-\alpha/2}}{\sqrt{nI(\theta_0)}}$. For general k, reject if $n(\hat{\theta}_n - \theta_0)^T I(\theta_0)(\hat{\theta}_n - \theta_0) > \chi_{k_{1-\alpha}}^2$. Can replace $I(\theta_0)$ by $I(\hat{\theta}_n)$ and still have this asymptotic distn.

Rao Score Test. Let $U_{\theta}(X_i) = \frac{\partial}{\partial \theta} \log p_{\theta}(X_i)$. We know $\mathbb{E}_{\theta_0}U_{\theta_0}(X_i) = 0$, $Var_{\theta_0}U_{\theta_0}(X_i) = I(\theta_0)$, so $\frac{1}{\sqrt{n}}\sum U_{\theta_0}(X_i) \stackrel{d}{\to} N(0,I(\theta_0))$. So reject $H_0: \theta = \theta_0$ if $\left|\frac{1}{\sqrt{n}}\sum U_{\theta_0}(X_i)\right| > \frac{z_{1-\alpha/2}}{\sqrt{I(\theta_0)}}$.

M-ESTIMATION

Setup. $X_1, \dots, X_n \stackrel{iid}{\sim} P$ on $(\mathcal{X}, \mathcal{A})$. Family of *criterion* functions $m_{\theta}(x), m_{\theta}: \mathcal{X} \to \mathbb{R}, \ \theta \in \Theta \text{ (e.g. } -L(\theta, X)).$

Def (M-estimator). $\hat{\theta}_n = \arg\max_{\theta \in \Theta} \frac{1}{n} \sum m_{\theta}(x_i)$.

- e.g. mean minimizes $\frac{1}{n} \sum_{i=1}^{n} (X_i \theta)^2$ e.g. median minimizes $\frac{1}{n} \sum_{i=1}^{n} |X_i \theta|$

Def (Z-estimator). $\hat{\theta}_n$ such that $\sum M_{\theta}(x_i) = 0$. • e.g. MLE often solves $\sum_{i=1}^{n} \nabla_{\theta} \log p_{\theta}(X_i) = 0$

Setup. $K \subseteq \mathbb{R}^p$ compact. $\mathcal{C}(K)$ is the space of continuous functions $K \to \mathbb{R}$. $\mathcal{C}(K)$ is a Banach space with norm $||w||_{\infty} = \sup_{t \in K} |w(t)|$, and it is separable (has a countable dense subset) W_1, W_2, \cdots are iid random functions on $\mathcal{C}(K)$ (e.g. $W_i(t) = m_t(X_i)$).

Thm. Suppose W is a random function in $\mathcal{C}(K)$, K compact. Let $\mu(t) = \mathbb{E}W(t), t \in K$. If $\mathbb{E}||W||_{\infty} < \infty$, then (i) μ is continuous.

(ii) Define $M_{\varepsilon}(t) := \sup_{s:||t-s||<\varepsilon} |W(s) - W(t)|$. Then $\sup_{t \in K} \mathbb{E} M_{\varepsilon}(t) \to 0 \text{ as } \epsilon \downarrow 0$

Thm. W_1, W_2, \cdots iid random functions in C(K), Kcompact. Let $\mu(t) = \mathbb{E}W(t)$, $\overline{W}_n(\cdot) = \frac{1}{n} \sum W_i(\cdot)$. If $\mathbb{E}||W||_{\infty} < \infty$, then $||\overline{W}_n - \mu||_{\infty} \stackrel{p}{\to} 0$ as $n \to \infty$.

Thm. $\{G_n\}_{n\geq 1}$ random functions in $\mathcal{C}(K)$, K compact. Suppose $||G_n - g||_{\infty} \stackrel{p}{\to} 0$, g non-random in $\mathcal{C}(K)$. Then (i) If $\{t_n\}_{n\geq 1}\subseteq K$ are random vectors s.t. $t_n\stackrel{p}{\to} t^*(\in K)$, then $G_n(t_n) \stackrel{p}{\to} q(t^*)$.

(ii) If g achieves its maximum at a unique t^* and if $\{t_n\}_{n\geq 1}$ are random vectors maximizing G_n , i.e. $G_n(t_n) = \sup_{t \in K} G_n(t)$, then $t_n \stackrel{p}{\to} t^*$.

(iii) (from Keener, 9.4.3) If $K \subseteq \mathbb{R}$ and q(t) = 0 has a unique solution t^* , and if t_n are RVs solving $G_n(t_n) = 0$, then $t_n \stackrel{p}{\to} t^*$.

Remark (MLE). X_1, \dots, X_n iid $p_{\theta}, \theta \in \Theta, \theta_0$ denotes the truth. $\hat{\theta}_n = \arg \max_{\theta \in \Theta} [l_n(\theta) - l_n(\theta_0)],$ $l_n(\theta) = \sum \log p_{\theta}(x_i)$. Here $\overline{W}_n = l_n(\theta) - l_n(\theta_0)$, where $W_i(\theta) = \log \frac{p_{\theta}(x_i)}{p_{\theta_0}(x_i)}$; $\mathbb{E}W_i(\theta) = -I(\theta_0, \theta) =$ $-\int \log \frac{f_{\theta_0}(x)}{f_{\theta}(x)} f_{\theta_0}(x) d\mu(x)$, (KL divergence). Have $\theta_0 =$ $\arg\max_{\theta\in\Theta}\mathbb{E}W(\theta)$, by lemma.

Lemma. If $P_{\theta} \neq P_{\theta_0}$, then $I(\theta_0, \theta) > 0$ and $I(\theta_0, \theta_0) = 0$.

Thm. $\Theta \subseteq \mathbb{R}^p$ compact. $\mathbb{E}_{\theta_0}||W||_{\infty} < \infty$ where $W(\theta) = \log \frac{p_{\theta}(X)}{p_{\theta_0}(X)}$. $p_{\theta}(\cdot)$ is a continuous function in θ for almost all x. $p_{\theta} \neq p_{\theta_0} \ \forall \theta \neq \theta_0$. Then, under P_{θ_0} , $\hat{\theta}_n \stackrel{p}{\to} \theta_0$.

Thm. Let $\Theta = \mathbb{R}^p$, $W(\theta) = \log \frac{p_{\theta}(X)}{p_{\theta_{\theta}}(X)}$. Suppose

- (i) $\theta \mapsto p_{\theta}(x)$ is cts.
- (ii) $\theta \neq \theta_0 \implies p_{\theta} \neq p_{\theta_0}$
- (iii) $\forall K \text{ compact}, K \subseteq \Theta, \mathbb{E}_{\theta_0} \sup_{\theta \in K} |W(\theta)| < \infty$
- (iv) $\exists a > 0 \text{ s.t. } \mathbb{E}_{\theta_0} \sup_{\|\theta\| > a} W(\theta) < \infty.$
- (v) $p_{\theta}(x) \to 0$ as $||\theta||_2 \to \infty$.

Then $\hat{\theta}_n \stackrel{p}{\to} \theta_0$ under P_{θ_0} , where $\hat{\theta}_n$ denotes the MLE, if it exists.

Remark. The weaker condition $\mathbb{E}_{\theta_0} \sup_{\theta \in \Theta} W(\theta) < \infty$ is sufficient. Also, $\Theta \subseteq \mathbb{R}^p$ can be any open set.

Remark. Let $\hat{\theta}_n$ be a global maximizer of $\overline{W}_n(\theta)$. Assume A0-A4, and $\hat{\theta}_n$ is consistent. Then $\sqrt{n}(\hat{\theta}_n - \theta_0) \stackrel{d}{\rightarrow}$ $N(0, I(\theta_0)^{-1})$ under P_{θ_0} . (pf. check whp $l'_n(\hat{\theta}) = 0$)

Thm. Let $W(\theta) = \log \frac{p_{\theta}(X)}{p_{\theta_0}(X)}$. Suppose

- (i) $\mathbb{E}_{\theta_0} \sup_{\theta \in \Theta} W(\theta) < \infty$
- (ii) $\theta \mapsto p_{\theta}(x)$ is upper semi cts
- (iii) $\theta \neq \theta_0 \implies P_{\theta} \neq P_{\theta_0}$
- (iv) $\Theta = \bigcup_{l>1} K_l$, K_l compact, increasing, s.t. $\lim_{l\to\infty} \sup_{\theta\in K^c} W(\theta) = -\infty \text{ a.s. (w.r.t. } p_{\theta}, \forall \theta).$

Then $\hat{\theta}_n \stackrel{p}{\to} \theta_0$. (HW3 Q1)

a) $\exists l \text{ s.t. } \theta_0, \hat{\theta}_n \in K_l \text{ whp. b) } \text{Fix } \delta > 0. \ \forall \theta \in B_l := K_l \cap \{\theta \in \mathcal{B}_l := K_l \cap \{\theta \in \mathcal{$ $\Theta: d(\theta, \theta_0) \geq \delta$, \exists neighborhood V_{θ} s.t. $E_{\theta_0} \sup_{\theta \in V_{\theta}} W(\theta, X_1) < 0$ $E_{\theta_0}W(\theta_0, X_1)$ (by u.s.c.). c) B_l is compact + WLLN \Longrightarrow $\sup_{\theta \in B_1} \overline{W}_n(\theta, X) < W_n(\theta_0, X)$ whp

Prop. Let Θ be an interval and $Z_n(\theta)$ a random func s.t. (i) $\theta \mapsto Z_n(\theta)$ is non-decreasing with $Z_n(\hat{\theta}_n) = o_p(1)$

(ii) $Z_n(\theta) \stackrel{p}{\to} Z(\theta), \forall \theta$, where $Z(\theta)$ is non-random.

(iii) $\theta \mapsto Z(\theta)$ is strictly increasing with $Z(\theta_0) = 0$. Then $\hat{\theta}_n \stackrel{p}{\to} \theta_0$. (HW3 Q2).

CONTIGUITY AND LAN

Def (absolute continuity of measure). Let P and Q be two probability measures on $(\mathcal{X}, \mathcal{F})$. We say P is absolutely continuous w.r.t Q (noted $P \ll Q$) if $Q(A) = 0 \implies P(A) = 0.$

By Radon-Nikodyn theorem, $P \ll Q$ iff $P(A) = \int_A h dQ$ for some non-negative measurable $h:(\mathcal{X},\mathcal{F})\to(\mathbb{R},\mathcal{B}),$ i.e. dP/dQ = h.

Prop. $P \ll Q$ iff $Q(A_n) \to 0 \implies P(A_n) \to 0, \forall \{A_n\}.$

Def (contiguity). Let P_n and Q_n be prob measures on $(\mathcal{X}_n, \mathcal{F}_n)$. P_n is contiguous to Q_n (noted $P_n \triangleleft Q_n$) if $Q_n(A_n) \to 0 \implies P_n(A_n) \to 0.$

Prop. $P_n \triangleleft Q_n$ iff $T_n \stackrel{p}{\longrightarrow} 0 \implies T_n \stackrel{p}{\longrightarrow} 0 \ \forall \ \text{RVs} \ T_n \ \text{on} \ \mathcal{X}_n$

Def (total variation distance). $||P - Q||_{TV} =$ $\sup |P(A) - Q(A)|$. If μ is a dominating measure for P and Q, and $p = dP/d\mu$, $q = dQ/d\mu$, then $||P - Q||_{TV} = \frac{1}{2} \int_{\mathcal{X}} |p(x) - q(x)| d\mu.$

Also $||P - Q||_{TV} = |P(A) - Q(A)|$ where $A = \{\frac{p}{a} \ge 1\}$.

Prop. If $||P_n - Q_n||_{TV} \to 0$ then $P_n \triangleleft \triangleright Q_n$. Note the converse is <u>not</u> true (e.g. $P_n = N(0,1), Q_n = N(1,1)$).

Thm (Portmanteau). Let S be a metric space, with a Borel σ -algebra. Let P_n , P be prob measures on S. Then TFAE:

- (i) $\lim \int g dP_n = \int g dP$, $\forall g$ bounded continuous.
- (ii) $\limsup \int g dP_n \leq \int g dP$, $\forall g$ u.s.c. bounded above.
- (iii) $\liminf \int g dP_n \geq \int g dP$, $\forall g$ l.s.c. bounded below.
- (iv) $P_n(A) \to P(A)$, $\forall A \text{ s.t } P(\partial A) = 0$.

Remark. Can change $\int gdP_n$ to $E_{P_n}g(X_n)$ and $\int gdP$ to $E_P g(X)$ in (i) - (iv).

Note $E_{P_n}[g(X_n)] = \int g(X_n)dP_n = \int g(X_n(\omega))P_n(d\omega) =$ $\int g(x)P^{X_n}(dx) = E_{P^{X_n}}[g], \text{ where } P^{X_n}(A) = P_n(X \in A)$ is the distribution function of X_n .

Note also that $X_n \stackrel{d}{\underset{P}{\longrightarrow}} X$ means $E_{P_n}g(X_n) \to X_Pg(X)$ for all g bdd. cts., or equivalently that the distn. funcs P^{X_n} converge weakly to P^X .

Remark. If U is open, 1_U is l.s.c, and if K is closed, 1_K

is u.s.c. Moreover, for (ii) and (iii), we can equivalently take g just of this form.

Def. f is l.s.c. at x_0 if $\forall \varepsilon > 0 \exists \delta > 0$: $||x - x'|| < \infty$ $\delta \implies f(x') \geq f(x_0) - \varepsilon$, when $f(x) < \infty$ (and $f(x') \to \infty$ as $x' \to x_0$ if $f(x) = \infty$). Equivalently, $\liminf_{x\to x_0} f(x) \geq f(x_0)$. Change to $f(x') \leq f(x_0) + \varepsilon$

Lemma. Let μ be a dominating measure of P and Q, and $p = dP/d\mu$, $q = dQ/d\mu$. Then TFAE:

- (i) $P \ll Q$
- (ii) P(q=0)=0
- (iii) $\int p/q dQ = 1$

Def. Let $\mathrm{d}P/\mathrm{d}Q=p/q$ if q>0 and =0, otherwise. In general $\int h dP \geq \int h \frac{dP}{dQ} dQ$, with equality if $P\ll Q$.

Le Cam's first lemma. Let (P_n, Q_n) be prob measures on $(\mathcal{X}_n, \mathcal{F}_n)$. The following are equivalent:

- (i) $P_n \triangleleft Q_n$
- (ii) $\frac{dQ_n}{dP_n} \stackrel{d}{\longrightarrow} U$ along a subsequence, then $\Pr(U=0) = 0$
- (iii) If $\frac{dP_n}{dQ_n} \stackrel{d}{\longrightarrow} V$ along a subsequence, then $\mathbb{E}V = 1$.

Remark. If $\frac{dQ_n}{dP_n} \stackrel{d}{\to} U$, such that $\Pr(U=0) = 0$ and $\mathbb{E}U=1$, then $P_n \triangleleft \triangleright Q_n$.

Cor. Suppose $\frac{dQ_n}{dP_n} \stackrel{d}{\underset{P}{\longrightarrow}} e^{N(\mu,\sigma^2)}$ such that $\mu + \frac{\sigma^2}{2} = 0$. Then $P_n \triangleleft \triangleright Q_n$.

Remark. If $\frac{dQ_n}{dP_n} \stackrel{d}{\xrightarrow{P_n}} e^{N(\mu,\sigma^2)}$ and $P_n \triangleleft Q_n$, then $\mu + \frac{\sigma^2}{2} = 0.$

Le Cam's third lemma. Let $P_n \triangleleft Q_n$. Assume $\left(X_n, \frac{\mathrm{d}P_n}{\mathrm{d}Q_n}\right) \stackrel{d}{\rightarrow} (X, R)$ with distribution $F_{X,R}(x, r) =$

 $P(X \leq x, R \leq r)$, then $\left(X_n, \frac{dP_n}{dQ_n}\right)$ converges in distribution under P_n and $\mathbb{E}_{P_n} f(X_n, dP_n/dQ_n) \to \mathbb{E}\{Rf(X, R)\},\$ $\forall f$ bounded cts.

Corollary. Assume $\left(X_n, \log \frac{dP_n}{dQ_n}\right) \stackrel{d}{\underset{O_n}{\longrightarrow}} (X, Z) \sim$ $N\left(\begin{vmatrix} \mu_1 \\ \mu_2 \end{vmatrix}, \begin{vmatrix} \sigma_1^2 & \sigma_{12} \\ \sigma_{12} & \sigma_2^2 \end{vmatrix}\right)$ where $\sigma_{12} = \sigma_1 \sigma_2 \rho$, such that $\mu_2 + \frac{\sigma_2^2}{2} = 0$, then $X_n \stackrel{d}{\underset{P_-}{\longrightarrow}} N(\mu_1 + \sigma_{12}, \sigma_1^2)$.

Remark. The same holds with vector-valued R.V. \mathbf{X}_n . Note that in this case, μ_1 would be a vector, σ_1^2 would be a matrix, and σ_{12} would ve a vector.

Under previous corollary, we also have jointly:

$$(X_n, \log \frac{dP_n}{dQ_n}) \xrightarrow{d} N \left(\begin{bmatrix} \mu_1 + \sigma_{12} \\ \mu_2 + \sigma_2^2 \end{bmatrix}, \begin{bmatrix} \sigma_1^2 & \sigma_{12} \\ \sigma_{12} & \sigma_2^2 \end{bmatrix} \right) \text{ (hw4 q6)}$$

Definition (LAN). Let Θ be open. For every θ_0 , let $P_{\theta_0}^n$ be a prob measure on $(\mathcal{X}_n, \mathcal{F}_n)$. LAN holds at θ_0 if there exists a positive sequence $\{\phi_n\}_{n\geq 1}$ converging to 0, s.t $\forall h$ fixed, $\log \frac{dP_{\theta_0+h\phi_n}^n}{dP_{\theta_0}^n} = h\Delta_n - \frac{h^2}{2}I(\theta_0) + \varepsilon_n(h)$, for some $I(\theta_0) > 0$, s.t.

(i)
$$\Delta_n \xrightarrow[P_{\theta_0}]{d} N(0, I(\theta_0))$$

(ii)
$$\varepsilon_n \xrightarrow[P_{\theta_0}]{p} 0$$
.

Remark. LAN $\implies P_{\theta_0 + \frac{h}{\sqrt{c}}}^n \triangleleft \triangleright P_{\theta_0}^n$.

Remark. If in IID set-up $A_0 - A_4$ hold, LAN holds with $\phi_n = 1/\sqrt{n}$.

Thm. Suppose LAN holds at θ_0 , for all $\theta_0 \in \Theta$. If $\frac{T_n-\theta_0}{\phi_n} \xrightarrow[P]{d} N(0,\sigma^2(\theta)), \forall \theta_0 \in \Theta \text{ then } \sigma^2(\theta_0) \geq 1/I(\theta_0) \text{ for }$ a.e. θ_0 (under Lebesgue measure).

Cor. If $\sigma(\theta)$ and $I(\theta)$ are both continuous, then $\sigma^2(\theta_0) \geq$ $1/I(\theta_0), \forall \theta_0 \in \Theta.$

Lemma. Suppose LAN holds at $\theta_0, \forall \theta_0 \in \Theta$. Let T_n be s.t. $\frac{T_n-\theta_0}{\phi_n} \stackrel{d}{\underset{P_n^n}{\longrightarrow}} N(0,\sigma^2(\theta_0))$, and $\liminf_{n\to\infty} P_{\theta_0+\phi_n}^n(T_n \le$ $\theta_0 + \phi_n \le 1/2.$ Then $\sigma^2(\theta_0) \geq \frac{1}{I(\theta_0)}$.

Theorem. Suppose LAN holds at θ_0 . Let T_n be a sequence of rv's, such that $T_n \xrightarrow{d} G_h$ under $P_{\theta_0 + h, \phi_n}^n$, $\forall h$ fixed. Then $G_h \stackrel{d}{=} F(Z,U)$ where $Z \sim N(h,I(\theta_0)^{-1})$. $U \sim U(0,1)$. Also Z and U are independent, and F is a non-random measurable function free of h.

Theorem. Suppose LAN holds at θ_0 . Let ψ_n be a sequence of asymptotically level α tests for $\theta = \theta_0$ vs. $\theta > \theta_0$ i.e. $\limsup_{n \to \infty} \mathbb{E}_{\theta_0} \psi_n \leq \alpha$. Then $\forall h > 0$, $\lim \sup \mathbb{E}_{\theta_0 + h\phi_n} \psi_n \le 1 - \Phi(z_{1-\alpha} - h/\sqrt{I(\theta_0)}).$

Pf: On subsequence, $\limsup E_{\theta_0+hr_n}\phi_n = \lim E_{\theta_0+hr_n}, \phi_{n_k}$. On further subsequence, $(\phi_n, \frac{dP_{\theta_0+hr_n}}{dP_{\theta_0}}) \xrightarrow[P_{\theta_0}]{d} (V, R)$ by jt. tightness.

 $\therefore \phi_n \xrightarrow{d} V(h)$ (le Cam). By thm, $V(h) = F(Z,U), Z \sim$ $N(h, H(\theta_0)^{-1}), U \sim U(0, 1).$ Also $E_{\theta_0 + hr_n} \phi_n \to EF(U, V)$ (UI), so $E_{h=0}F(Z,U) \leq \alpha$. Now compare F(U,V) to MP test \square

Remark. A test that achieves this bound is locally asymptotically optimal.

Lemma. (i) Given a real-valued r.v X, there is a nonrandom measurable function F such that $X \stackrel{a}{=} F(U)$. $U \sim U(0, 1)$.

(ii) Given real-valued r.v.s (X,Y), there is non-random measurable F s.t. $(X,Y) \stackrel{d}{=} (X,F(X,U))$, and $X \perp U$.

PROJECTIONS

Def (Projection). Let (Ω, \mathcal{F}, P) be a prob space. Let \mathcal{L}^2 be the vector space of all r.v.'s X in this space such that $\mathbb{E}X^2 < \infty$. \hat{X} is the projection of $X \in \mathcal{L}^2$ onto the sub-vector space S if

(i) $\hat{X} \in S$

(ii) $\mathbb{E}(X - \hat{X})^2 \le \mathbb{E}(X - Y)^2, \forall Y \in S.$

Prop. (i) $\hat{X} \in S$ is a projection iff $\mathbb{E}(X - \hat{X})Y = 0$, $\forall Y \in S.$

(ii) Projection, if it exists, is unique.

(iii) If $1 \in S$, then $Var(\hat{T}) \leq Var(T)$ and $\mathbb{E}(\hat{T}) = \mathbb{E}(T)$

Def. S is closed if $\{Y_n\}_{n\geq 1}\in S$ and $E(Y_n-Y)^2\to 0$ implies $Y \in S$.

Prop. If S is closed, then a projection exists.

Remark. Let S be the space of all X such that $\mathbb{E}X^2 < \infty$ and X is \mathcal{G} -measurable, where $\mathcal{G} \subseteq \mathcal{F}$. Then $X = \mathbb{E}[X|\mathcal{G}]$.

Lemma (Hájek Projection). Let $X_1, ..., X_n$ be independent, and let S be the set of all rv's of the form $\sum_{j=1}^{n} g_j(X_j)$ where $\mathbb{E}g_j(X_j)^2 < \infty$ (equivalently those of the form $\sum_{i=1}^{n} Y_i$, where $EY_i^2 < \infty$, Y_i is X_i measurable).

If $T \in \mathcal{L}^2$, its projection is $\hat{T} = \sum_{i=1}^n \mathbb{E}(T|X_i) - (n-1)\mathbb{E}T$.

Remark. In general $E[T|X_i]$ will depend on j. However, if T is symmetric in (X_1, \dots, X_n) , and (X_1, \dots, X_n) are independent, then $\mathbb{E}[T|X_i]$ does not depend on j, i.e. $\mathbb{E}[T|X_i] = g(X_i)$, for some function g free of j.

Thm. Let $(\Omega_n, \mathcal{F}_n, P_n)$ be a prob space for each n, and let S_n , with $1 \in S_n$, be a subspace of $\mathcal{L}^2(\Omega_n, \mathcal{F}_n, P_n)$ for each n. Suppose $T_n \in \mathcal{L}^2$ has a projection \hat{T}_n , such that

$$\frac{\operatorname{Var}(T_n)}{\operatorname{Var}(\hat{T}_n)} \underset{n \to \infty}{\longrightarrow} 1. \text{ Then } \frac{T_n - \mathbb{E}T_n}{\sqrt{\operatorname{Var}(T_n)}} - \frac{\hat{T}_n - \mathbb{E}\hat{T}_n}{\sqrt{\operatorname{Var}(\hat{T}_n)}} \overset{\mathcal{L}^2/p}{\longrightarrow} 0.$$

Setup (U-Stats). Suppose (X_1, \dots, X_n) are iid cts rvs on \mathcal{X} . Let $h:\mathcal{X}^k\to\mathbb{R}$ be a measurable function. Want to estimate $\theta := \mathbb{E}h(X_1, \dots, X_k)$, and $h(X_1, \dots, X_k)$ is \bullet If $a_n \to a$, then $(1 + \frac{a_n}{a})^n \to e^a$

an unbiased estimator.

Define $U := \mathbb{E}[h(X_1, \dots, X_k)|X_{(1)}, \dots, X_{(n)}].$ Then $\mathbb{E}U = \theta$ and $Var(U) \leq Var(h(X_1, \dots, X_k))$ as U is a projection (or by Rao-Blackwell).

WLOG assume h is symmetric in its arguments, so that $U = \frac{1}{\binom{n}{l}} \sum_{1 \le l_1 < \dots < l_k \le n} h(X_{l_1}, \dots, X_{l_k}) =$ $\frac{1}{\binom{n}{n}} \sum_{\mathbf{i} \in [\binom{n}{n}]} h(X_{\mathbf{i}}).$

Prop. (i) $\mathbb{E}U = \theta$.

(ii) $Var(U) = \sum_{c=1}^{k} {k \choose c} {n-k \choose k-c} \xi_c / {n \choose k}$, where $\xi_c = Cov(h(X_{i_1}, \dots, X_{i_k}), h(X_{j_1}, \dots, X_{j_k}))$, where $|\{i_1,\cdots,i_k\}\cap\{j_1,\cdots,j_k\}|=c.$

Remark. If $\xi_1 \neq 0$, $Var(U) \sim \frac{k \binom{n-k}{k-1}}{\binom{n}{k-1}} \xi_1 \sim \frac{k^2}{n} \xi_1$, since $\binom{n}{r} \sim \frac{n^r}{r!}$ for r fixed, $n \to \infty$.

Thm. If $\mathbb{E}h^2(X_1,\dots,X_k)<\infty$, then $\sqrt{n}(U_n-\theta)\underset{n\to\infty}{\overset{d}{\longrightarrow}}$ $N(0, k^2 \xi_1)$, provided $\xi_1 \neq 0$. Moreover:

- The Hájek projection of $U_n \theta$ is $\hat{U}_n = \frac{k}{n} \sum_{i=1}^n g(X_i)$, where $q(x) = \mathbb{E}[h(x, X_2, \cdots, X_k) - \theta].$
- $Var(g(X_1)) = \xi_1$.

Setup (2-sample U stats). Suppose $X_1, \dots, X_m \stackrel{iid}{\sim} F$ and $Y_1, \dots, Y_n \stackrel{iid}{\sim} G$.

Let $U_{m,n} = \frac{1}{\binom{m}{n}\binom{n}{n}} \sum_{\mathbf{i} \in [\binom{m}{r}], \mathbf{j} \in [\binom{n}{s}]} h(X_{\mathbf{i}}, Y_{\mathbf{j}})$, where h: $\mathcal{X}^r \times \mathcal{Y}^s \to \mathbb{R}$. Also assume h is symmetric between X variables with Y fixed, and viceversa, i.e. $h(X_{\pi(i)}, Y_{\pi(i)}) = h(X_i, Y_i)$. We assume $N = m + n \to \infty$ s.t. $\frac{m}{N} \to \lambda$, $\frac{n}{N} \to 1 - \lambda$, for some $\lambda \in (0,1)$. Let $\theta = \mathbb{E}h(X_{\mathbf{i}}, Y_{\mathbf{i}}).$

Thm. If $\mathbb{E}h^2(X_i,Y_i)<\infty$, then

 $\sqrt{N}(U_{m,n} - \theta) \stackrel{d}{\to} N(0, \frac{r^2}{\lambda} \xi_{1,0} + \frac{s^2}{1-\lambda} \xi_{0,1}), \text{ where } \xi_{1,0} =$ $Cov(h(X_{\mathbf{i}}, Y_{\mathbf{i}}), h(X_{\mathbf{i}'}, Y_{\mathbf{i}'})), \text{ where } |\hat{\mathbf{i}} \cap \hat{\mathbf{i}}'| = 1, |\mathbf{j} \cap \hat{\mathbf{j}}'| = 0.$

• The Hájek projection of $U_{m,n} - \theta$ is

 $\hat{U}_{m,n} = \frac{r}{m} \sum_{i=1}^{m} g_{1,0}(X_i) + \frac{s}{n} \sum_{j=1}^{n} g_{0,1}(Y_j)$, where $g_{1,0}(x) = \mathbb{E}h(x, X_2, \cdots, X_r, Y_1, \cdots, Y_s) - \theta,$ $g_{0,1}(y) = \mathbb{E}h(X_1, \dots, X_r, y, Y_2, \dots, Y_s) - \theta.$

• $Var(g_{1,0}(X_1)) = \xi_{1,0}, Var(g_{0,1}(Y_1)) = \xi_{0,1}$

DISTRIBUTIONAL RESULTS

- $B(\alpha, \beta) = \frac{\Gamma(\alpha)\Gamma(\beta)}{\Gamma(\alpha+\beta)}$
- $\Gamma(\alpha + 1) = \alpha \Gamma(\alpha)$
- $\Gamma(k) = (k-1)!$, for $k \in \mathbb{Z}^+$.
- $\bullet \Gamma(\frac{1}{2}) = \sqrt{\pi}$

- If $X \ge 0$, then $\mathbb{E}[X] = \int_0^\infty P(X > x) dx$
- Suppose $X_i \sim N(\theta, \sigma^2)$:
- $E(\sum X_i) = n\theta$
- $-E(\sum X_i^2) = n\sigma^2 + n\theta^2$
- $-E((\sum X_i)^2) = n^2\sigma^2 + n^2\theta^2$
- $-(n-1)S^{2} = \sum (X_{i} \overline{X})^{2} \sim \sigma^{2}\chi_{n-1}^{2}$
- $-\frac{\overline{X}-\mu}{\sqrt{S^2/n}}\sim t_{n-1}$
- $\dot{E}(\frac{1}{\sum X_i^2}) = \frac{1}{\sigma^2(n-2)}$
- MLE is $(\overline{X}, \frac{1}{n} \sum (X_i \overline{X})^2)$
- Def (Sample variance). $s^2 := \frac{1}{n-1} \sum_{i=1}^n (x_i \overline{x})^2$
- $\sum (x_i \overline{x})^2 = \sum x_i^2 n\overline{x}^2$
- $\sum (X_i \mu)^2 = n(\overline{X} \mu)^2 + \sum (X_i \overline{X})^2$
- $\operatorname{Var}(\sum_{i} X_{i}) = \sum_{i} \operatorname{Var}(X_{i}) + 2 \sum_{i < j} \operatorname{Cov}(X_{i}, X_{j})$
- $\chi_k^2 = Gamma(\alpha = \frac{k}{2}, \beta = \frac{1}{2})$
- $Exp(\lambda) = Gamma(\alpha = 1, \beta = \lambda)$
- If $U \sim U(0,1)$, then $-\log(U) = Exp(1)$
- If $X_i \stackrel{iid}{\sim} U(0,\theta)$, then $n(1-\frac{X_{(n)}}{\theta}) \stackrel{d}{\to} Exp(1)$. In particular, $X(n) \stackrel{p}{\to} \theta$.
- If $X_i \stackrel{iid}{\sim} Bin(1, \theta/n)$, then $\sum_{i=1}^n X_i \stackrel{d}{\rightarrow} Poisson(\theta)$.
- If $X_n \sim Bin(n, p_n)$ and $np_n \to \lambda$, then $X_n \stackrel{d}{\to} Pois(\lambda)$
- If $X \sim P_0(\lambda)$ and $Y \sim P_0(\mu)$ independently, then $X + Y \sim P_0(\lambda + \mu)$
- If $X \sim Gamma(\alpha, \theta)$ and $Y \sim Gamma(\beta, \theta)$ independently, then $X + Y \sim Gamma(\alpha + \beta, \theta)$, and $\frac{X}{X+Y} \sim Beta(\alpha, \beta)$.
- If $X \sim Gamma(\alpha, \beta)$, then $\sigma X \sim Gamma(\alpha, \beta/\sigma)$.
- If $X_1, X_2 \stackrel{iid}{\sim} N(\theta, 1)$, then $X_1 | \{X_1 + X_2 = t\} \sim N(t/2, 1/2)$.
- If $X_1, \dots, X_n \stackrel{iid}{\sim} N(\theta, 1), T = \sum X_i$, then $(X_1, \dots, X_n | T = t) \sim N(\begin{pmatrix} t/n \\ \dots \\ t/n \end{pmatrix}, \begin{pmatrix} 1 \frac{1}{n} & -\frac{1}{n} & \dots \\ -\frac{1}{n} & 1 \frac{1}{n} & \dots \\ \dots & \dots & \dots \end{pmatrix})$
- If $X \sim Pois(\lambda)$, $Y \sim Pois(\mu)$ independently, then $X|\{X+Y=t\} \sim Bin(t, \frac{\lambda}{\lambda+\mu})$.
- MVN (Multi-variate normal). If $\mathbf{X} \sim N(\mu, \Sigma)$, then $f(\mathbf{x}) = (2\pi |\det \Sigma|)^{-n/2} \exp(-\frac{1}{2}(\mathbf{x} \mu)^T \Sigma^{-1}(\mathbf{x} \mu))$.

- $\mathbb{E} e^{\mathbf{v}^{\mathbf{t}} \mathbf{X}} = e^{\mathbf{v}^{\mathbf{t}} \mu + \frac{1}{2} \mathbf{v}^{\mathbf{t}} \mathbf{\Sigma} \mathbf{v}}.$
- In particular, in the bivariate case with correlation ρ , $f(x,y)=\frac{1}{2\pi\sigma_X\sigma_Y\sqrt{1-\rho^2}}\times$

$$\exp\left(-\frac{1}{2(1-\rho^2)}\left[\left(\frac{x-\mu_x}{\sigma_x}\right)^2 - 2\rho\left(\frac{x-\mu_x}{\sigma_X}\right)\left(\frac{y-\mu_U}{\sigma_Y}\right) + \left(\frac{y-\mu_Y}{\sigma_Y}\right)^2\right]\right)$$

- In the standardized case with correlation ρ , (i.e. $X, Y \sim N(0,1)$, $EXY = \rho$), we have $Y = \rho X + \sqrt{1 \rho^2} Z$, where $Z \perp X$.
- If $U \sim N(0,1)$ and $V \sim \chi_p^2$ independently, then $\frac{U}{\sqrt{V/p}} \sim t_p$
- \bullet If $U\sim\chi_p^2$ and $V\sim\chi_q^2$ independently, then $\frac{U/p}{V/q}\sim F_{p,q}$

Order Statistics. If $X_1, \dots, X_n \stackrel{iid}{\sim} f(x)$, then

- $f_{X_{(j)}}(x) = \frac{n!}{(j-1)!(n-j)!} f(x) F(x)^{j-1} (1 F(x))^{n-j}$
- $F_{X_{(j)}}(x) = \sum_{k=j}^{n} {n \choose k} F(x)^k (1 F(x))^{n-k}$
- $f_{X_{(i)},X_{(j)}}(u,v) = \frac{n!}{(i-1)!(j-1-i)!(n-j)!} \times f(u)f(v) \times F(u)^{i-1}(F(v)-F(u))^{j-1-i}(1-F(v))^{n-j}$, for u < v, i < j
- $f_{X_{(1)}, \dots, X_{(n)}}(\mathbf{x}) = n! f(x_1) \dots f(x_n)$, for $x_1 < \dots < x_n$
- If $U_1, \dots, U_n \stackrel{iid}{\sim} U[0,1]$, then $U_{(k)} \sim Beta(k, n-k+1)$
- The conditional distribution of $X_{(i)}|X_{(j)} = t$ is that of the *i*th order statistic from j-1 samples of the original distribution truncated at t.
- $(X_1|X_{(n)}=t) \stackrel{d}{=} \frac{1}{n}\delta_t + \frac{n-1}{n}U(0,t)$ (HW2 Q4)
- Order statistics are independent of rank statistics

Propn (Asymptotic distribution of ordered statistics). If $X_1, ..., X_n$ are i.i.d from continuous strictly positive density f, then, for $p \in (0,1)$,

$$\sqrt{n}(X_{(\lceil np \rceil)} - F^{-1}(p)) \xrightarrow{\mathcal{D}} N\left(0, \frac{p(1-p)}{f_X(F^{-1}(p))^2}\right)$$

- If X_1, \dots, X_n have continuous cdf F, then $F(X_1), \dots, F(X_n) \sim U[0,1]$, and if $U_1, \dots, U_n \sim U[0,1]$, then $F^{-1}(U_1), \dots, F^{-1}(U_n) \stackrel{d}{=} X_1, \dots, X_n$.
- If $X_1, \dots, X_n \stackrel{iid}{\sim} N(\theta, \sigma^2)$ and $\theta \sim N(\mu, \tau^2)$, then $-\theta | \mathbf{X} \sim N(\frac{\mu \sigma^2 + n \tau^2 \overline{X}}{\sigma^2 + n \tau^2}, \frac{\sigma^2 \tau^2}{\sigma^2 + n \tau^2})$ $-\mathbf{X} \sim N(\mu \mathbf{1}, \sigma^2 \mathbf{I}_n + \tau^2 \mathbf{1} \mathbf{1}^T)$ (marginally) (HW3 q5)
- If $X_1, \dots, X_n \sim B(1,p)$ and $p \sim B(\sqrt{n}/2, \sqrt{n}/2)$, then $\delta(X) = \frac{\sum X_i + \sqrt{n}/2}{n + \sqrt{n}}$ is the unique Bayes estimator. It has constant risk $\frac{1}{4(1+\sqrt{n})^2}$, so it's unique minimax and L.F.
- MLE for Normal, Poisson, and Bernoulli is \bar{X} . For uniform it is $X_{(n)}$.

- Cauchy Distribution verifies conditions A3 and A4.
- If X is negative binomial (r, p), and Y = 2pX, then $Y \xrightarrow{d} \chi^2_{2r}$ as $p \to 0$.
- If $X \sim Gamma(\alpha, \beta)$ and $Y \sim Poisson(x\beta)$, then $P(X \leq x) = P(Y \geq \alpha)$.
- If $X \sim Bin(m, p)$, $Y \sim Bin(n, p)$ independently, then $P(X = k | X + Y = t) = \frac{\binom{m}{k} \binom{n}{t-k}}{\binom{m+n}{t}}$ (HyperGeometric)

INEQUALITIES

Triangle: $|||x|| - ||y||| \le ||x + y|| \le ||x|| + ||y||$

• $||f||_p = \left(\int |f|^p d\mu\right)^{\frac{1}{p}}$ or $||X||_p = \left(E|X|^p\right)^{\frac{1}{p}}$ are norms

Holder's: Suppose $p, q \in [1, \infty]$ s.t. $\frac{1}{p} + \frac{1}{q} = 1$. Then $||fg||_1 \le ||f||_q ||g||_p$. In particular,

- $\int |f(x)g(x)|dx \le \left(\int |f(x)|^p dx\right)^{\frac{1}{p}} \left(\int |g(x)|^q dx\right)^{\frac{1}{q}}$
- $E|XY| \le (E|X|^p)^{1/p} (E|Y|^q)^{1/q}$

Cauchy-Schwarz. Setting p = q = 2 in Holder's,

- $E|XY| \le \sqrt{EX^2EY^2}$
- $Cov(X,Y)^2 \le Var(X)Var(Y)$, with = iff Y = aX + b

Pinsker's: $||P - Q||_{TV} \le \sqrt{2D_{KL}(P||Q)}$.

Markov's: $P(|X| \ge M) \le \frac{E|X|}{M}$

Jensen's: Under UNBIASEDNESS.

Cosh. $\cosh(x) = \frac{e^x + e^{-x}}{2} \le e^{x^2/2}$

Log. $\log(1+x) \le x - \frac{x^2}{2}$ if $x \ge 0$ (Taylor expansion)

- $\bullet \log(1+x) \le x 2\frac{x^2}{2}$ if $x \ge -0.5$
- $\log(1+x) \ge x \frac{x^2}{2} + \frac{x^3}{4}$ iff $x \in [0, 0.45...]$ (\le elsewhere)
- $\log(1+x) \ge x \frac{x^2}{2} + \frac{x^3}{2}$ iff $x \in [-0.43, 0]$ (\le elsewhere)

MISCELLANEOUS

Sterling's Approx. $n! \sim \sqrt{2\pi n} \left(\frac{n}{e}\right)^n$.

O notation.

- f(x) = o(g(x)) as $x \to \infty$ iff $\frac{|f(x)|}{g(x)} \to 0$ as $x \to \infty$.
- $X_n = o_n(a_n)$ if $X_n/a_n \stackrel{p}{\to} 0$.
- f(x) = O(g(x)) as $x \to \infty$ iff $\exists x_o, M$ such that |f(x)| < Mg(x) for all $x > x_0$.
- $X_n = O_p(a_n)$ if X_n/a_n is stochastically bounded, i.e. $\forall \varepsilon > 0 \ \exists M, N \ \text{s.t.} \ P(|X_n| \ge Ma_n) < \varepsilon \ \text{for all} \ n \ge N.$

Thm (joint convergence).

• Suppose $X_n \xrightarrow{p} X$ and $Y_n \xrightarrow{p} Y$. Then $(X_n, Y_n) \xrightarrow{p} (X, Y)$.

- Suppose $X_n \xrightarrow{\mathcal{D}} X$ and $Y_n \xrightarrow{\mathcal{D}} Y$, and X_n is independent of Y_n for all n. Then $(X_n, Y_n) \xrightarrow{\mathcal{D}} (X, Y)$.
- $(X_n, Y_n) \stackrel{d}{\to} (X, Y)$ iff $\forall k_1, k_2 \in \mathbb{R}, k_1 X_n + k_2 Y_n \stackrel{d}{\to} k_1 X + k_2 Y$. $\mathbf{X}_n \stackrel{d}{\to} \mathbf{X}$ iff $\langle \mathbf{t}, \mathbf{X}_n \rangle \stackrel{d}{\to} \langle \mathbf{t}, \mathbf{X} \rangle, \forall \mathbf{t} \in \mathbb{R}^d$.

Thm (Cts. Mapping). If f is cts. and $X_n \to X$, then $f(X_n) \to f(X)$ (holds for convergence a.s., in $\mathbb P$ or in $\mathcal D$)

Thm (Continuous Mapping). Let g be a function, such that the set of discontinuity points has prob. measure 0. Then

• $X_n \to X$ implies $g(X_n) \to g(X)$ for convergence in distribution, prob. and a.s. respectively.

Def (L_p convergence). $X_n \stackrel{L_p}{\to} X$ if $E|X_n - X|^p \to 0$

- For $s \ge r \ge 1$, $X_n \stackrel{L_s}{\to} X \implies X_n \stackrel{L_{\tau}}{\to} X$ (Jensen's)
- For p > 1, $X_n \stackrel{L_p}{\to} X \implies X \stackrel{p}{\to} X$
- If X_n is UI and $X \stackrel{p}{\to} X$, then $X_n \stackrel{L_1}{\to} X$
- If $X_n \stackrel{L_p}{\to} X$, then $EX_n^p \to EX^p$ (reverse Δ inequality)

Uniform Integrability. A sequence $(X_n)_{n\geq 1}$ is UI if $\forall \varepsilon>0, \exists M>0 \text{ s.t. } \sup_{n>1}\mathbb{E}|X_n|I_{(|X_n|>M)}<\varepsilon$

• If $X_n \xrightarrow{\mathcal{D}} X$ and $\sup_{n \geq 1} \mathbb{E}[|X_n|^{1+\delta}] < \infty$ for some $\delta > 0$, then $\mathbb{E}X_n \to \mathbb{E}X$.

Tightness. We say $\{V_n\}_{n\geq 1}$ is tight if given $\varepsilon > 0$, $\exists K_{\varepsilon} < \infty$ such that $P(V_n \in [-K_{\varepsilon}, K_{\varepsilon}]) \geq 1 - \varepsilon$, $\forall n \geq 1$. Alternatively, $\sup_{n\geq 1} P(|V_n| > M) \to 0$ as $M \to \infty$. Also written as $V_n = O_p(1)$ or 'bounded in probability'.

- \bullet Marginal tightness implies joint tightness. This in turn implies convergence in distribution along a subsequence.
- If $X_n \xrightarrow{d} X$, then $\{X_n\}_{n\geq 1}$ is tight.
- If $\{X_n\}_{n\geq 1}$ is UI, then $\{X_n\}_{n\geq 1}$ is tight.

Def $(X_n)_{n\geq 1}$ is bounded in L_p for $p\geq 1$ if $\sup_{n\geq 1}\mathbb{E}[|X_n|^p]<\infty$.

- For $p \ge 1$, this implies tightness.
- For p > 1, this implies UI. (Counterexample for p = 1; $X_n = nI(0, 1/n]$). Conversely, UI \implies bounded in L_1 (but NOT bounded in L_p for p > 1).

Prohorov's thm. If V_n is tight, there exists a subsequence along which it converges in distribution.

Lagrange Multipliers. Let $f : \mathbb{R}^d \to \mathbb{R}$, $h = (h_1, \dots, h_k)^T$, $h_i : \mathbb{R}^d \to \mathbb{R}$, $f, h \in \mathcal{C}^1$. Let $\mathcal{L}(x, \lambda) = f(x) - \langle \lambda, h(x) \rangle$. If $\exists (x^*, \lambda^*)$ s.t.

- i) $\mathcal{L}(x^*, \lambda^*) = \max_{x \in \mathbb{R}^d} \mathcal{L}(x, \lambda^*)$
- ii) $h(x^*) = 0$

Then x^* maximizes f(x) subject to h(x) = 0. Therefore: 1. Maximize $\mathcal{L}(x,\lambda)$ in x to find $x^*(\lambda)$. 2. Find λ^* s.t. $x^*(\lambda^*)$ satisfies $h(x^*) = 0$.

KKT. Consider $\max_{x \in \mathbb{R}^d} f(x)$ subject to h(x) = 0 and $g(x) \leq 0$, $g = (g_1, \dots, g_m)^T$ $g_i \leq 0$. Let $\mathcal{L}(x, \lambda, \mu) = f(x) - \langle \mu, g(x) \rangle - \langle \lambda, h(x) \rangle$. If x^* is a solution, $\exists \lambda^*, \mu^*$ s.t.

Stationarity: $\nabla \mathcal{L}(x^*, \lambda^*, \mu^*) = 0$

Primal feasibility: $g_i(x^*) \leq 0, h_i(x^*) = 0$

Dual feasibility: $\mu_i^* \geq 0$

Complementary slackness: $\mu_i^* g_i(x^*) = 0$

KKT (sufficiency). Consider:

(*) $\min_{x \in \mathbb{R}^d} f(x)$ s.t. $g(x) \leq 0$ and h(x) = 0. Let $\mathcal{L}(x, \lambda, \mu) = f(x) + \langle \lambda, h(x) \rangle + \langle \mu, g(x) \rangle$. Suppose $\exists (x^*, \lambda^*, \mu^*)$ s.t. $g(x^*) \leq 0$, $h(x^*) = 0$, $\mu^* \geq 0$, $\langle \mu^*, g(x^*) \rangle = 0$ and $\mathcal{L}(x^*, \lambda^*, \mu^*) = \min_{x \in \mathbb{R}^d} \mathcal{L}(x, \lambda^*, \mu^*)$. Then x^* solves (*). Therefore:

- 1. Minimize $\mathcal{L}(x,\lambda,\mu)$ in x to find $x^*(\lambda,\mu)$.
- 2. Maximize $\mathcal{L}(x^*(\lambda,\mu),\lambda,\mu)$ over $\mu \geq 0$ to find $\mu^*(\lambda)$.
- 3. Find λ^* s.t. $h(x^*(\lambda^*, \mu^*(\lambda^*))) = 0$.
- 4. Check $\langle \mu^*, g(x^*) \rangle = 0$ (automatic for 'nice' convex problems).

KKT (inequalities only). Consider:

(*) $\min_{x \in \mathbb{R}^d} f(x)$ s.t. $g(x) \le 0$.

Let $\mathcal{L}(x,\mu) = f(x) + \langle \mu, q(x) \rangle$.

Suppose $\exists (x^*, \mu^*) \text{ s.t. } g(x^*) \leq 0, \ \mu^* \geq 0, \ \langle \mu^*, g(x^*) \rangle = 0$ and $\mathcal{L}(x^*, \mu^*) = \min_{x \in \mathbb{R}^d} \mathcal{L}(x, \mu^*).$

Then x^* solves (*). Therefore:

- 1. Minimize $\mathcal{L}(x,\mu)$ in x to find $x^*(\mu)$.
- 2. Maximize $\mathcal{L}(x^*(\mu), \mu)$ over $\mu \geq 0$ to find μ^* .
- 3. Check $\langle \mu^*, g(x^*(\mu^*)) \rangle = 0$.

Def (compactness). A set K is compact if every open cover has a finite subcover.

Usually: closed and bounded.

Def (Characteristic function). $\phi_X(u) = \mathbb{E}e^{i\langle u, X\rangle}$

Cumulant generating function: $\log(Ee^{tX})$

 \bullet If it exists, it is convex and infinitely differentiable.

Weighted loss. If $L(g(\theta), \delta(X)) = w(\theta)(\delta(X) - g(\theta))^2$ the Bayes estimator is $\delta_0(X) = \frac{\mathbb{E}[\theta w(\theta)|X]}{\mathbb{E}[w(\theta)|X]}$.

An admissible estimator w.r.t sq. err. is also admissible w.r.t. weighted loss.

Absolute error loss. If $L(g(\theta), \delta(X)) = |\delta(X) - g(\theta)|^2$, the Bayes estimator is $\delta_0(X) = \text{median}(\theta|X)$.

0-1 loss. If $L(g(\theta), \delta(X)) = I(\delta(X) \neq g(\theta))$, the Bayes estimator is $\delta_0(X) = \text{mode}(\theta|X)$.

Scaled/shifted Bayes/minimax. If $\delta(X)$

Bayes/minimax for $g(\theta)$, then $a\delta(X)+b$ is Bayes/minimax for $ag(\theta)+b$.

- Under sq. err. loss, aX + b is inadmissible for EX if:
 - a > 1 (dominated by X)
 - a < 0 (dominated by $-\frac{b}{a-1}$)
 - $a = 1, b \neq 0$ (dominated by X)

Cochran's Thm. Suppose $Z \sim N(0, \Sigma)$ and $\Sigma^2 = \Sigma$. Then $Z^T Z \sim \chi^2_{tr(\Sigma)} = \chi^2_{r(\Sigma)}$.

 $\begin{array}{l} \textbf{Convexity characterizations.} \ f \ \text{is convex iff} \\ f(\lambda x + (1-\lambda)y) \leq \lambda f(x) + (1-\lambda)f(y), \ \forall x,y, \ \forall \lambda \in (0,1) \\ \text{iff} \ \frac{f(x_2) - f(x_1)}{x_2 - x_1} \leq \frac{f(x_3) - f(x_2)}{x_3 - x_2}, \ \forall x_1 < x_2 < x_3 \\ \text{iff} \ \frac{f(x_2) - f(x_1)}{x_2 - x_1} \leq \frac{f(x_3) - f(x_1)}{x_3 - x_1}, \ \forall x_1 < x_2 < x_3 \\ \end{array}$

Lyapunov CLT. Suppose X_1, X_2, \cdots are independent with means μ_i and variances σ_i^2 . Let $s_n^2 = \sum_{i=1}^n \sigma_i^2$. If, for some $\delta > 0$, $\lim_{n \to \infty} \frac{1}{s_n^{2+\delta}} \sum_{i=1}^n E|X_i - \mu_i|^{2+\delta} = 0$ (Lyapunov's condition). Then $\frac{1}{s_n} \sum_{i=1}^n (X_i - \mu_i) \stackrel{d}{\to} N(0, 1)$.

Binomial theorem. $(x+y)^n = \sum_{i=0}^n \binom{n}{i} x^i y^{n-i}$

Sherman-Morrison (Woodbury) formula.

 $(A + uv^T)^{-1} = A^{-1} - \frac{A^{-1}uv^TA^{-1}}{1 + v^TA^{-1}u}.$

U stats. $h(x,y) = \frac{1}{2}(x-y)^2 \implies U_n = \frac{1}{n-1}\sum (X_i - \overline{X})^2$

RANDOM FACTS FROM EXERCISES

- $\bullet \sum_{i=1}^{n} i^2 = \frac{1}{6}n(n+1)(2n+1)$
- Let $\alpha > 0$. Then $x^{\alpha} \log(x) \to 0$ as $x \to 0^+$.
- Let $P(X_i = \pm 1) = \frac{1}{2}$, $S_n = \sum_{i=1}^n X_i$. Then $Ee^{\lambda S_n} = (\cosh(\lambda))^n$ and $P(|S_n| > nt) \le 2e^{-nt^2/2}$
- Suppose $P_{n,\beta}(Y_i = y_i) = \frac{1}{Z_n(\beta)} \exp(\frac{\beta}{n-1} \sum_{1 \leq i < j \leq n} y_i y_j)$. Then $\frac{Z_n(\beta)}{2^n} \to \exp(-\frac{\beta}{2})(1-\beta)^{-\frac{1}{2}}$ (HW4 Q2) Also $\sqrt{nY} \xrightarrow{P_{n,\beta}} N(0, \frac{1}{1-\beta})$ (HW4 Q3)
- Suppose $X \sim p_{\theta}$, $\Theta_0 \subseteq \Theta_1$, $\delta_0(X)$ is unique UMVUE for $\theta \in \Theta_0$, and Θ_1 also has a UMVUE, and Θ_0 , Θ_1 have the same null sets. If δ_0 is unbiased for Θ_1 , then δ_0 is also a UMVUE for $\theta \in \Theta_1$ (midterm 1).

TAYLOR SERIES

- $e^x = \sum_{k=0}^{\infty} \frac{x^k}{k!} = 1 + x + \frac{x^2}{2!} + \cdots$
- $\log(1+x) = \sum_{k=0}^{\infty} (-1)^{k+1} \frac{x^k}{k} = x \frac{x^2}{2} + \dots$ for |x| < 1
- $\sin(x) = \sum_{k=0}^{\infty} \frac{(-1)^k}{(2k+1)!} x^{2k+1} = x \frac{x^3}{3!} + \frac{x^5}{5!} + \cdots$
- If $\delta(X)$ is $\left| \bullet \cos(x) = \sum_{k=0}^{\infty} \frac{(-1)^k}{(2k)!} x^2 k = 1 \frac{x^2}{2!} + \frac{x^4}{4!} + \cdots \right|$