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UNBIASEDNESS Def (Unbiased). An estimator 6(X) is unbiased for | Def (Sufficient) A statistic T is called sufficient for 6

Setup. Consider a set of probability measures {Py,0 €
O} on a sample space (X, F), dominated by a oOfinite
measure (this assumption holds throughout, unless ex-
plicitly stated). Observe X ~ Py for some § € O, and
infer 8. Let L(0,6(X)), be the loss function from esti-
mating 6 with §(X).

Def (Dominate in measure). We say P dominates @
itP(A)=0 = Q(A)=0,VAe F.

Def (Risk fn). R(0,8) = Eq[L(0, 5(X))).

9(0) if Eg6(X) = ¢(6), V0 € O.

Def (Minimax). An estimator Jp is minimax
for estimating g¢(¢) if, for all other estimaors 9,
supgco R(9(0),00) < supgeo R(g9(#),d). The minimax
risk of any estimator § is supgcg R(g(8),9).

Def (Bayes Risk). Under a prior model 8 ~ w(0),
T(ﬂ'v 6) = EONW[R(oa 6)] = E[L(97 6(X))]

Def (Statistic). A measurable function
T:(X,F)— (RF,B).

(or for {Py, 0 € ©}) if the conditional distribution of X|T
is independent of 6.

Thm (Neyman-Fisher Factorization Criterion).
Suppose {Py,0 € O} is a collection of probability mea-
sures on (X, F), which are dominated by a o-finite mea-
sure . Let X ~ Py for some 6§ € ©. Then T is sufficient
for 0 iff pg(x) = go(T(x))h(x) a.s. =, for some gy, h,
where pg(-) = dPy/dx.

Def (Exp. Fam.) {P,0 € O} (dominated by o-finite



measure) is said to form a k-dimensional exponential
family if the coiresponding pdfs are of the form

po(@) = exp{>"_, ni(O)Ti(x) — B(O)}h(a),
where h,Ty,---,T; : X =+ R and B,nq,---

Def (Support). The support of a density is the set
where the density is strictly positive.

Thm (Pitman-Koopman-Darmois). Suppose
X1, ..., X are iid with density {py,0 € O}, which are
continuous in z for fixed # and supported on an inter-
val I C R. Suppose there exists a sufficient statistic
(Ty,- -+ ,Tx) with continuous components.

(i) If k = 1, then pg(z) = e"OT@=BO)p(g),

(i) ¥ n > k > 1, and = +— py(z) is C!, then

po(z) = exp{ 35, ni(0)Ti(w) — B(6)}h(x).

Def (M.S.). Let S be sufficient for . S is Minimal
Sufficient if, given any other sufficient statistic 7', there
exists a measurable fn. h s.t. S(z) = h(T(z)) a.s. Py,
Vo € O.

Thm (Bahadur). Let X ~ Py,0 € © be an R"-valued
RV. Then a MS statistic exists.

Thm (M.S.). If ©g = {6y, ...,0r} and py have common
support I C X, then

Po, (X) P, (X)) .
T(z) = (pZ;(X)""’ pzS(X)) is M.S.

Thm (M.S.). Let {Py : 6 € O} be a collection of dom-
inated probability measures with common support, and
©¢ C O. If T is sufficient for {F : § € ©}, and M.S for
{Py : 0 € O}, then T is M.S for {Fy: 6 € ©}.

Thm (Lehman-Scheffe Partitions). Suppose T'(z) =
T(y) iff the ratio pp(z)/pe(y) is independent of §. Then
T is M.S.

Rigorous formulation: Suppose {P : 0 € ©} is a domi-
nated by a o-finite measure v. Suppose T'(z) = T'(y) iff
Jda, 8 > 0 (depending on z,y) s.t. ape(x) = Bpe(y), V6.
Then T is M.S.

Thm (M.S. for Exp. Fam.). Let {P),0 € ©} be an
exponential familhz of the form

po(s) = exp{S, m(O)Ti(x) — BO)}h(), and let
7= {(m(60), .. (0)) : 0 € O} C RE.

(a) If Ive, vy, - ,vk € s.t. {vi—vg, -, VK —Vp} are
lin. indep., then (7%, - ,T}) is M.S.

(b) If (1)° # 0, then (Ty,--- ,Ty) is M.S.

Def (C.S.) A suff. stat. 7T is complete for 0 if
Eof(T)=0,¥0 € © = f(T)=0a.s. Py,V0.

Mk © = R

Lemma (MGF). If Ee!X = Ee'Y vVt € (-4,9), then
XEy

Thm (C.S. for Exp. Fam.). In the previous setting,
if (7)° # 0, then (T4, ...,T}) is C.S.

Thm (C.S. & M.S.). If 3 a CS statistic T and 3 an
MS statistic U, then 7" is M.S. (and U C.S.).

Def (Ancillary). A statistic S is ancillary for 6 if the
distribution of S is free of 6.

Thm (Basu). If T'is C.S and V is ancillary, then 7" and
V are independent (under Py, V0 € ©).

Def. U = {U: X = R : EU(X)? < 00, EgU(X) =
0,v6 € ©}

A={0:X = R:E¢(X) = ¢g(0),Var(6(X)) < oo}.
Note if A # (), then U +§ = A, V6 € A.

Def (UMVUE). An estimator 69 € A is UMVUE if]
V6 € A, Vargdog(X) < Vargd(X),V0 € O.

Thm. & is UMVUE iff Egdo(X)U(X) = 0,VU € U.

Def (Convexity). C C R* is convex if

reCyelC = ar+(1—a)ye C,Vae (0,1).

A function f: C — R is convex if

flaz+ (1 —a)y) < af(z) + (1 —a)f(y), Yo,y € C and
€ (0,1). Change to < for strictly convex.

Remark. If V¢ exist, then ¢ is convex iff ¢(y) >
d(x) + (y — 2)TVo(x), Vo # y (> for strictly convex).

If ¢ is twice differentiable, then ¢ is (strictly) convex if

2
H= [azaﬁj}ij exists and is +ve (semi)definite.

Thm (Jensen’s Inequality). Let ¢ : I — R be convex,
where I C R is an interval.

(a) If E|X| < oo, then E¢(z) > ¢(EX).

(b) If ¢ is strictly convex, strict inequality holds above,
unless X = EX a.s.

Note this also holds for conditional expectations

Thm (Rao-Blackwell). Let T be sufficient for 6.

(a) If 0(X) is unbiased for g(f) and a — L(g(0),a)
is convex, then n(T) = Ey[6(X)|T] is unbiased and
R(g(0),n(T)) < R(g(0),6(X)),V0 € ©.

(b) If 0p is unbiased and has finite risk V6, and
a — L(g(#),a) is strictly convex, then R(g(9),n(T)) <
R(g(6),6(X)),¥0, unless § is a function of T a.s.
Py, V0 € ©.

Corollary (UMVUE) If §(X) is an unbiased estimate
of g(0) and T is C.S., then Ey[§(X)|T] is the UMVUE.

Defn (Score func). For © = R”,
S = (0, logpe(X), - -+, 0p, log pe(X))".

Defn (Fisher Info). I(0) = Eg(dylogpe(X))?2.
On R¥, I(0) = [Eg(9p, log pe(X))(e, log po(X))]i,;-

Remark. If n = 7(0) : 7 € CL,7/(f) # 0, then
1((8)) = 1(9)/7'(0)°.

On R*, the information matrix is +ve semi-definite (sym-
metry is obvious) because 1(6) = E[SST].

Thm (CRLB/Information Inequality). Suppose
(a) ® C R is an open interval.

(b) {po(x),0 € ©} have common support.

(c) Py(x) = Zpo(z) exists and is finite for all 2 and .
(d) Do [ po(x)dp = [ Ogpe(z)dp.

Let 5(X) be an estimator s.t. E[§(X)?] < oo, and I() €
(0,00), and [, 6(x)0gpe(x)dp = By [, 6(x)pe(x)dp.
Then Var(§(X)) > [0sES(X)]?/1(0).

(this is just ¢/(0)%/I(6) for unbiased estimators).

Remark. If equality holds, pg(z) is a 1-parameter exp.
fam. and 0(X) is the natural sufficient stat.

Lemma (Fisher info). Assume (a) - (d) and I(6) < oo.
Then 1(0) = Var(dg log(pg(x))).

If, in addition, pj(z) exists V0,z, and 9} [ po(x)dp =
[ 93po(x)dp, then 1(6) = —E[07 log(ps(X))].

Thm. Let pg(z) = e"DT@=BOp(x) and § € O, an
open interval. Let 7(0) = Eo[T(X)], and assume T is not
constant. Then

(a) 7/(0) # 0 and I(7(0)) = 1/Varg(T).

(b) I(h(0)) = [n'(0)/1' (0)]*Vare(T).

Propn (regularity of exp. fam.). Let u be a o-
finite measure on X and ty,---,t, : X — R. De-
fine G(01,---,0n) = [,exp{d 0iti(x)}h(x)dp, and
Q={0:G(0;, - .,0,) <oo}. Then

(a) Q is convex and 0 — log G(6) is convex on €.

(b) Let Qo be the interior of Q and assume Qq # 0.
Then, on Og, 0 — G(0) is infinitely differentiable and
the derivatives can be taken inside the integral, e.g.

00,G = [ ti(z) exp{_ Ost;(x) }h(x)dp.

Remark. Similar conclusions hold with the normalizing
constant e~ B, Moreover, B(#) € C>°.

Remark. For a general function n : Q — R, all conclu-
sions hold at 8 = 6, provided 71(6y) is an interior point if
n={n: [e"®h(z)du < 0o} and n € C*.

Propn. If p,(z) = eXiz1 niTi(@)=AMp(z), and n € 7,



* E,(T) = A

o Covy (T}, Ty) = - Bm ).

A(n
If po(z) = exp{ 35—, n:(0)Ti(z) — B(0)}h(z), n(fo) € 7,
() B'(60)/n'(60) and

"(9)B'(9)

o If k =1, then Ep,(T(X)
_ "(9)

Var(T(X)) = @y —

o If k > 1, then Ep(T(X)) =

and VB = {33-B(0)}:.

Propn (regularity of the estimator). Let 5(

estimator s.t. Var(d(X)) < co. Then 9y [ d(x) )d,u =
J 0(X)gpe(x)dp, at any 6y € (2)°, provided Eib( ) s.
|%®ff’o(”| < b(z) for all sufficiently small h, and
Jb(x)]6(x)|pe(x)dp < oo (in particular, this will hold if
Eg, [b(X) } < 00, by Cauchy-Schwarz).

B”(@) B

J~IVB, where J = {am}

)be an

Propn (regularity of estimator in exp. fam.).
Let pg(z) = e"DH@)=BOp(z) and n € C* (so that
Be(C>). If 6( ) is an estimator with Var(§(X)) < oo,
then 9y [ 6(x)pg(z)dp = [ 6(x)dppe(x)dp.

Thm (Multl-parameter CRLB). Suppose
(a) © C R* is an open set.
) {po(x),0 € ©} have common support.
c) Op,po(x) exists, Vi, x, 0, and is finite.
d) Op, f;ﬂJe d,u [ 9o, p0(2)dp.
e) Oy, fX r)dp = fX x)0p,po(x)d .
f) 1(0) is ﬁnlte and +ve definite.
Then we have Var(§(X)) > ofI(6)"'a, where a; =
09, Epd(X). In particular, if §(X) is unbiased for g(0),
a; = 0p,9(0).

(b
(
(
(
(

AVERAGE RISK OPTIMALITY

Setup. Suppose {FPy,0 € O} is a collection of proba-
bility measures on X dominated by a o-finite measure
. Assume now that 6 is a random variable on ©, with
prior distn. 7. Suppose we want to estimate g(#). The
risk function is still R(g(0),0) = Ex~p,L(g(0),d(X)) =
E[L(g(9),6(X))|0].

Def (Bayes risk) of 6: r(m,6) = Eg[R(g(0),0)]

Def (Bayes estimator). ¢y is a Bayes estimator if
r(m,dp) < r(m,J) for any other estimator 4.

Def (Bayes risk of a Prior). r(7) = infs(r(m, J)

)-
Remark. The joint distribution of (X 0) is pg( ) (6).
The marginal distribution of X is m(z) = [g pe(z)m(df).
The posterior distn. is w(0|x) = pg( Ym(0)/m(x)

po(x)m(0).

Thm (Bayes estimator for sq. err. loss). If
L(g(0),0(X)) = (9(9) — 6(X))?, and E[g(0)?] < 0,

(i) 9o = E[g(0)|X] is a Bayes estimator with Bayes risk
E[Var(g(0)[X)].

(ii) If 6(X) is any other Bayes estimator, then §o(X) =
0(X) a.s. under the joint distn. of (X, 6).

Remark. (ii) also implies dp(X) = 6(X) a.s. under the
marginal of X. If the marginal dominates the conditional,
this will further imply that 6o(X) = 6(X) a.s. Py,V0 € ©,
i.e. we have uniqueness under the conditionals.

Lemma (Bias of Bayes estimator). Under squared
error loss, a Bayes estimator cannot be unbiased, unless
0(X)=g(0) as

Def (Conjugate Prior). A non-trivial class of probabil-
ity distributions F' is called a conjugate family of priors
for a model {Py : § € O} if the posterior distribution
m(0|x) also belongs to F.

Example. For pg(z) = exp{Zle n:(0)T;(x) —
B(0)}h(xz), the conjugate family is =(8) =
exp{3i_; 5:mi(0) — s0B(0) (50, .-, k)

Def (least favourable). A prior 7 is least favourable
if, for all other distributions #’ on ©, r(mw) > r(x’).
A sequence of priors {m,},>1 is least favourable if
limy, o0 7(mp) = sup,, (7).

Thm (minimax from Bayes). Suppose 7 is a distribu-
tion on © with Bayes estimator 6, s.t. r(7) = (7w, ;) =
supgee R(9(0), 7). Then:

(a) 0, is minimax

(b) If &, is the unique (w.r.t. the conditionals) Bayes
estimate w.r.t. 7, then §; is unique minimax.

(c)  is least favourable.

Corollary. A Bayes estimator with constant risk is min-
imax.

Thm (minimax from L.F.). Suppose {7, },>1 is a se-
quence of priors s.t. lim, . 7(m,) = supgeg R(g(6), o)
for some estimate dg. Then:

(a) do is minimax.

(b) {7y }n>1 is least favourable.

Lemma (minimax on subset). Suppose 6(X) is
minimax for g(f) on the parameter set ©p C ©. If
Supgpee, R(9(0),0) = suppee R(g(f),0), then § is mini-
max for § € ©.

Def (Admissible). An estimator 0 is inadmissible if

36" s.t. R(g(8),d") < R(g(0,9), with strict inequality for
some 6 € ©. Otherwise, § is admissible.

Remark. If the loss is strictly convex, any estimator
which is not a function of the M.S. statistic is inadmissi-
ble (Rao-Blackwell).

Lemma. If the loss is strictly convex, § is admissible
and R(g(0),0) = R(g(0),0"),v0 € O, then 6 = ¢ a.s.
Py, Vo € 6.

Lemma. Any unique (w.r.t. the conditionals) Bayes

estimator is admissible.

Lemma. An admissible estimator with constant risk is
minimax. If the loss function is strictly convex, it is also
unique minimax.

Lemma. If § is unique minimax, then § is admissible.

Thm (Karlin). Suppose {Py,0 € O} is a one-
parameter exponential family pg(z) = €7@ =BOp(z),
for 8 € (a,b) (possibly unbounded). Let d),(X) =

1+)\T(X) + 1+/\,)\ > 0,v € R If 30y € O s.t.
ffo e~ VAHAB(9) 19 — fabo e~ VAO+AB(0) 19 — 0, then (5(X)
is admissible for estimating g(0) = EpT(X), w.r.t squared

error loss.

Corollary If (a,b) =
EoT.

(—00,00) , then T is admissible for

Def (improper prior). A measure 7 on the parameter
space © s.t. T(0©) = 0.

If m(z) = [gpe(z)n(df) < oo,V € X, we can de-
fine a probability measure 7(-|x) on © by w(A|z) =
Japo(z)m(d6)/m(z).

Def (generalized Bayes estimate). A minimizer of

Josx L(g(0),6(x))pg(x)m(df)dp, where 7 is an improper
prior.

Thm (generalized Bayes estimate). If m(z) < oo, Vz,
a generalized Bayes estimate, w.r.t squared error, is the

posterior mean [g g(f)w(d6]z), provided [y g(0)*r(df) <
0.
Remark (Jeffrey’s Prior). One common

v/ 1(6). In the multi-

“vague” /improper prior is 7(f)
parameter case, 7(6) o y/det(I(6))

Def (hierarchical Bayes). The prior distribution on
the parameter 6 has a hyper-parameter, A, which itself
has a hyper-prior. We have, X|0 ~ py(x), 0|\ ~ 7x(6),
A~ h(N).



Thm. Writing 7(8) = [m(0)(\)d)\, we have that
D(m(0]x)||w(0)) = ( (Al2)[[¥(A))- (HW5 q5)
Def (K-L divergence)

p(z)
D(P||Q) = [ p(x)log {75 da.

Remark. It always exists and is > 0 (maybe = infinity),
with equality iff p = q.

Def (empirical Bayes estimate). Assume the hyper-
parameter A is now fixed. An estimator derived from the
posterior 8|z (e.g. the posterior mean) now also depends
on A. Substituting A with a non-trivial estimator of A
derived from the marginal of X yields an empirical Bayes
estimate for 6.

James Stein Estimator. Let g(x) = (”H QH)QU x. Then

d7s = x — g(x) and has a uniformly better risk than the
UMVUE estimator (6 = x) for n > 3. (HW5 Q2)

ASYMPTOTIC OPTIMALITY
Setup. Consider a candidate estimator &, (X, ...
for estimating g(0).

» Xn)

Def (Consistency). 6,(X) is consistent for g(6) if
6,(X) 2 g(6), under P, V6 € ©.

Def (Likelihood). L(0|X) = [T, po(X
the likelihood of 7 is L(n]|X) = supy, 9(0)=

i) Ifn=g(0),
L(0]X).

Def (MLE). If there exists a unique 6,, which is a global
maximizer of § — L(6|X), then 6, is the MLE.

Def (Asymptotic efficiency). for a sequence of esti-
mators 6,,: /n(6, — 6o) % N(0,1(00)71)
0

Def (Tightness). A sequence of RVs {Y,, },>1 is tight
if Ve > 0, 3K < 00 s.t. sup,,>; P(|Yn| > K.) <«

Thm. If Y, 25 Y, then {¥},},>1 is tight.

Def (/n-consistent). An estimator 0, is /n-consistent
for 0 if /n(6,, — ) is tight under Py,, ¥y € O.

Thm. If 0,, is \/n-consistent for 6, then 0, 2 0.

iid

Asymptotic Risk Thm (MLE) X;,...,X,, ~ Py,0 €

O, with pdf py(-). Consider the hypotheses:

(A0) Identifiability: Py, # Py, whenever 61 # 0.

(A1) {py(-),0 € ©} have common support.

(A2) © C R and 6 is an interior point of ©.

(A3) The function 8 — pg(x) is 3 times differen-

tiable and supgeg,—s,0,-+] |03 logpe(z)] < M(x), with
Eg,[M(X1)] < o0, for some ¢ > 0.

(Ad) 0 — prg )dp(x) can be differentiated twice
through the integral. Further, 0 < I(6p) < oo.

(A2*) © is an open interval.

(A3*) The map 6 +—  po(z) is C? and
SUDge9y—5,00+5] |95 10g po(x)| < M(z), with E[M(X1)] <
oo, for some § > 0.

e Under A0 and Al, Py, (l,(00|X) > 1,(0]1X)) — 1 as
n — 00, VO # 6.

e Under A0 and Al, if © is finite, the MLE 0,, exists
with high probability (i.e. the probability that the like-
lihood function has a unique maximizer goes to 1), and
Py, (0, = 6p) — 1 as n — oco.

e Under A0-2, if § ~ pg(x) is C! (differentiable with
continuous derivative), there exists a sequence of roots 0.,
of the likelihood equation I/,(f) = 0 which is consistent
for 6y (though 6,, depends on 6 so is not an estimator).
e Under A0-2, if 6 — py(z) is differentiable and the
likelihood equation I;,(#) = 0 has a unique root 6,,, then
én Ly 9y under Py,, and én is the MLE w.h.p.

e (Asymptotic normality of MLE). Under A0-4, for any
consistent sequence of roots 6, of I/,(0) = 0, we have
V(B — 60) 25 N(0,1(80)7).

e Under A0, A1, Ad, A2* and A3*, if \/n(d, — 0) =
N(0,V(6)), then the set {6 : V(0) < I(fy)~'} has
Lebesgue measure 0.

e Under AO0-4, if én is y/n-consistent for 6, then
O =0, —10,(0,,)/11(0,,) is asymptotically efficient.
Remark. =00 2y N(0,1(8), =22 B —1(8),
L) < LS M(X) B EM(X)) < oo where
fn (007 )

Propn. If the MLE is consistent and conditions A0

through A4 hold, then the MLE is asymptotically effi-
cient (HW6 Q6).

Example (Exp. Fam.). Let py(z) = /7@ -BO)p(z),
6 € O, an open interval. Let ,,(0) = log[[pe(x;). Then
1"(0) = —nB"(#) = —nVar(T(X)) < 0, so 0 — 1,,(9) is
strictly concave so I/,(#) = 0 can have at most 1 root.
Thm (Slutsky). Suppose X, KEN X, A, %oa, B, &b
Then A, X, + By 2 aX +b.

Thm (Invariance of MLE). (a) If § is a global maxi-
mizer of § — L(0]|X), then 7 = g() is a global maximizer

of n — L(n|X).
(b) If 6 is the MLE and Vn, |{0 : g(0) = n}| < oo, then 7
is the MLE for 7.

Thm (A-Method). If /n(X, — u) EEN N(0,0?), and
g € Clst g(u) # 0, then a(g(Xa) — g(n) >
N(0,0%¢" (1)?).

Remark. Multivariate result holds v/n(g(X,) — g(u)) EEN

N(0,€75¢) where & = £,y

Thm (Modified A-Method). If \/n(X ) D

N(0,0?%), and g € C? s.t. ¢'(u) = 0, then n(g9(X,) —
D 42

9(1) = % 9" (W3

Thm (Uniform integrability). If X, Dy X and
sup,,>1 E[| Xy "] < oo for some § > 0, then EX,, — EX.

Thm (Multivariate CLT for MLE). Under A0, Al,
and:

(A2) © CRP and 6y € © is an interior point.

(A3) The function 8 — pg(x) is 3 times partially differ-

1
entiable and supj_g, |, <s ‘#pgz) < M, (), where

Eg, M;;1(X) < 00, Vi, j, k.
(A4) Eq, 0Oy, 10gpe( ) =0 and

EQO[BIO%ZQ(X) 610%119()()] _]Eeo {8 lé;)aggz(X)} = Iij(eo)v

with the matrix [ (90) finite and +ve definite.
e Then there exists a consistent sequence of roots of the
likelihood equation alogig?@ =0,1<i<p.
e Further, this sequenceb is asymptotically efficient, i.e.

V(B — 80) 25 N(0,1(60)71).

HYPOTHESIS TESTING
Setup. Let {Py,0 € ©} be a collection of probability

measures on X dominated by a o-finite measure p. Let

po(-) = dd%. Let ©¢ and ©; be disjoint subsets of ©.
Given X ~ Py for some 6 € O, we want to test whether

0 €Byorfe0O;.

Def (Test function). A function ¢ : X — {0,1} is
called a non-randomized test function.

Def. Types of errors of a test. If 8 € ©p, then ¢ = 1 is
Type I error. If 8 € O, then ¢ = 0 is Type II error.

Def (Power). The power of a test ¢ is 1 - Probability of
type II error; 5(0) = Py(¢p = 1) for 6 € ©1, a function of
0.



Def (Size). The size of a test ¢ is supycg, Po(¢ = 1).
Let a € (0,1). A test ¢ is called level a if supycg, Po(¢ =
1) <a.

Def (UMP). A test ¢ is called uniformly most power-
ful level « if, given any other level a test v, we have
P9(¢ = 1) > P9(¢7 = 1) Vo € 0.

Def. A function ¢ : X — [0, 1] is called a randomized test
function. If ¢ = p, toss a coin w prob heads p. If heads
choose O1, else ©y. In all previous definitions, replace
Py(¢ =1) by Eg[¢], and Py(¢ =0 by 1 —Egl[g].

Thm (NP lemma). Suppose we want to test Hy : 6 = 6
vs Hy : 0 = 07 at level a.
(i) There exists a test ¢ satisfying
(a) Eqg, [(Z)] =«
(b) There exists k € [0, co] such that
d(X) =1 if py, (X) > kpg,(X)
=0 ifpgl(X) < kp@o(X)

(ii) If a test ¢ satisfies (a) and (b), then ¢ is a Most Pow-
erful test for testing 0 = 0y vs 0 = 0.

(iii) If ¢ is Most Powerful level «, it must satisfy (b) for
some k. It also satisfies (a), unless Eg, [¢] = 1, in which
case Eg,[¢] < a.

Remark. If the boundary {X : pg, (X) = kpg,(X)} has
measure 0, then the MP test is unique.

Corollary. Let 8 = (1) denote the power of the MP
test for testing 6 = 0y vs 6 = 6, at level @ € (0,1). Then
B > a. Further, § > « unless py, = py,-

Def (MLR). Suppose © is an interval (Keener only re-
quires that © C R). We say that {ps(-),0 € ©} have the
Monotone Likelihood Ratio property in a statistic T'(X),
if VO, < 63 € O, pg,(x)/pe, (x) is a non-decreasing func-
tion of T'(X).

Keener: Natural conventions concerning division by zero
are used here, with the likelihood ratio interpreted as oo
when pg, > 0 and pg, = 0. On the null set where both
densities are zero the likelihood ratio is mot defined and
monotonic dependence on T is not required.

Thm. Let {py(-),0 € O} be MLR in T'(X), © an interval,
and Po, 7é Po, if 91 7é 02'
(i) For testing Hy : 0 < 6y vs Hy : 6 > 6y at level
€ (0,1), there exists a UMP test ¢ of the form
$(X)=1if T(X) > ¢
=vifT(X)=c
—0if T(X) < ¢,

and Eg,¢(X) = a.

(ii) The power function 3(6) = Eg¢ is strictly increasing
on the set {:0 < B(0) < 1}.

(iii) For all 8" € ©, the test of part (i) is UMP for testing
Hy:0<6¢ vs Hi :0 >0 at level o/ = 3(¢').

(iv) For any 6 < 6, ¢ minimises () among all tests
satisfying Eg 1 (X) = .

Lemma. Let {py(.), # € ©} be MLR in T(X), and © an
interval.
(i) If ¥ : R — R is non-decreasing, then so is 8 — Egu)(T).
(ii) If ) has a simple change of sign, i.e. Jzg € R s.t

T(x) <xg = (T(x)) <0

T(z) > zg = Y(T(x)) 20
Then one of three things happen:

a. Egy(T) > 0,V0 € ©

b. Egp(T) <0,V € ©

c. 36y s.t. E@’(/}(T) <0, VO < 0y, E9¢<T) >0, V0 > 0.
(iii) Suppose pg(z) > 0,Vz € X,0 € O and the function
po () /pa(x) is strictly increasing in T'(x) for 68" > 6.
Let ¢ be as in (ii) and further assume Py(¢(T) # 0) > 0.
If Eg,(T) = 0, then Egty(T) > 0 for 0 > 0y, Egth(T) < 0
for 6 < 6.

Lemma. Assume pp(z) > 0,V € ©,2 € X, ©
an interval, and pg (x)/pe(x) is strictly increasing in
T(X),v0 < @'. Then there is a unique test function ¢,
which is a function of T', of the form:
(],5(X) =1if T(X) € (61,62)
=0if T(X) ¢ [61702]
such that Ey, ¢ = o1 and Eg,¢ = g, for some 6; # 0s,
ag,az € (0,1).
That is to say, if ¢*(X) is such that
§*(X) = 11 T(X) € (¢f, )
= ifT(X) =
— 0 T(X) ¢ [c], 3]
and Ep, ¢* = ay and Ey,¢" = ag, then ¢ = ¢* as.

Thm (Generalized NP). Let f1, ..., fin11 be real-valued
integrable functions w.r.t u. Let (c1,...,¢m) € R™ and
set Co={¢: [¢fidu=c;,1 <i<m,¢isatest m} and
assume Cy is not empty.
(i) Among all ¢ € Cy, there exists a test ¢p which maxi-
mizes [ ¢ frt1dp.
(ii) A sufficient condition for ¢y € Cy to maximize
[ ¢fmirdp is that I(K7, ..., Kyy,) s.t.

o =1 if fm+l > Klfl + .. +Kmfm (*)

¢0 =0if fm—i—l < Klfl + ...+ Kmfm (*)
(iii) If ¢g € Cy satisfies (x) for some Kj, ..., K, > 0, then

$o maximizes [ ¢fn+1dp among all tests ¢ satisfying
Jofidu < ¢, for 1 <i <m.

(iv) The set M = {([ ¢ frdp, ..., [ ¢ fmdp), ¢ is a test fn},
a subset of R™, is closed and convex. If (¢q,...,¢p) is an
interior point of M, then 3Kq, ..., K,, and ¢g € Cy such
that (%) holds, and a necessary condition for ¢g € Cp
to maximize [ ¢fn,+1dp is that () holds a.s. (for some
KiK.

Propn. If ¢ is MP, and T is sufficient, then ¢ := E[¢|T)
is MP for the same test.

Thm. Suppose we want to test Hy 0 < 60, or
0 > 60, vs Hi : 01 < 6 < 0y at level o, where
X ~pg(z) = e"OT@=BOp(2) and n strictly increas-
ing.
(1) There exists a UMP test ¢ which satisfies:
¢(X):11fc1 <T <cy

=V; T = C;

= 0 otherwise.
and Ey, ¢ = Eg,¢ = o
(ii) Among all tests ¢ satisfying FEp, ¢ = Fg, ) = «, ¢
minimizes type I error Eg/1) for any 6 < 61 or 6’ > 6.

Setup (Least Favorable 7). Consider the problem of
testing Hy : 0 € ©g vs Hy : 0 = 01. Let w be a distribu-
tion on O¢ and let m(z) = fGo po(x)m(dl). Consider the
modified problem H} : X ~ m(-) vs Hy : X ~ pg, (-). Let
¢ be the NP test (MP) at level o with power f3;.

Theorem. Assume ¢, is level « for the original problem.
Then:

(i) ¢ is MP for the original problem.

(ii) If ¢, is unique MP for the modified problem, then ¢,
is unique MP for the original problem.

(iil) Br < Bar,Vn'. (i.e 7 is least favorable).

Remark. To find a UMP under a composite null, use a
Least Favourable Prior (including point masses)! (unless
we can apply our standard MLR /exp. fam. results).

Def (p-value). Suppose we want to test Hy vs Hp at
level a. Let ¢, be a non-randomized test function at level
a. Let Sq = {X : ¢o(X) = 1} be the rejection region,
and assume these are nested: a; < as = S4, C Sq,.
The p-value is p(X) = inf{u : X € S,}.

Intuitively, given the p-value, you can construct a level o
test by rejecting Hy if p(X) < «, accepting otherwise.

Lemma. Suppose X ~ py for some 6 € O, and we want
to test Hy : 8 € ©g vs Hy : 0 € O at level a. Let
{¢a}aec(0,1) be a collection of nested level a tests.



(i) Then Py(p(X) < u) <wu,Vu € (0,1),0 € Og
(ii) If 30p € Oy such that Py (X € S,) = «,Va then
Py, (p(X) < u) =u.

Def (Confidence Interval). Let X ~ Py for some
0 € ©. For every x € X, let S(z) be a subset of O.
We say the collection of sets {S(z),z € X} is a (1 — )
confidence region if Py(f € S(X)) >1—a, V0 € O.
Assume © C R. If S(z) = [l(x),00), then we call it a
lower confidence interval. If S(x) = (—o0, u(z)], an upper
CL If S(z) = [I(z), u(z)], a 2-sided CI.

Remark. Suppose for every 6y € O, ¢y, is a non-
randomized level « test for Hy : 60 = 6y vs H;.

Let S(z) = {0 : ¢9(X) = 0}. Then {S(z) : z € X} isa
(1 — a) confidence region.

Remark (Asymptotic CI). In practice,
V(0 —0) 4 N(0,V?2(9)) where V is continuous. Then,
by Slutsky’s (and cts. mapping thm), \/ﬁ% A N(0,1),
and therefore, (0 — ﬁzl_a/QV(é),éJr ﬁzl_a/QV(é)) is
al—a ClI. for 6.

Def (Unbiased Test). Suppose we want to test
Hy : 0 € ©y vs Hy : § € ©1 at level a. We say a
test ¢ is level o unbiased if

(i) suppee, Lo¢ <

(ll) iIlng@l Eg(b >

Def (UMPU). We say ¢ is Uniformly Most Powerful
Unbiased at level a, if ¢ is unbiased at level o and for
any other unbiased test ¥, Eg¢p > Ey1p, V0 € O.

Remark. If ¢ is UMP, it is also UMPU.

Lemma (UMPU). Suppose {pg,0 € ©} is a collection
of prob. measures, s.t. 8 — FEy¢ is continuous in 6 (met-
ric on O implicit). If ¢g is a test such that:

(i) ¢o is UMP among the class of tests satisfying
Eyp = a,¥0 € 009 N 9O1. (0S = boundary of S).

(ii) ¢o is level a for 6 € ©y.

Then ¢ is UMPU for 8 € ©y vs § € ©; at level a.

Theorem. Let X ~ py(z) = e"OT@-A0Op(3) g
strictly increasing and continuous, and © an open inter-
val. For the test Hy: 0 e [017 02] vs Hy: 0 ¢ [01, 92], there
exists a UMPU level « test ¢ given by:
¢ =1 lfT(X) ¢ [Cl,CQ]

=V; if T(X) = C;

= 0 otherwise.
and Ealgb = Egzd) = Q.

suppose

Theorem. X ~ pg(z) = e"OT@=AO0p(z), © is an
open interval, n € C! and 7/(#) > 0. We want to test
Hy : 0 =0y vs H : 0 # 6y at level a. There exists a
UMPU of the form:
¢ =11if T(X) ¢ [01702]
=0 T(X) € (e1,¢2),
where Eg,¢ = a and Ep, {¢(X)T(X)} = aEp,{T(X)}.

Lemma. Let M = {(Ep,[¢], Eo,[¢T)), ¢ is a test fn} C
R2. Then for any o € (0,1), (o, Ep,T) is an interior
point of M. (consider ¢ = a+el(T > Ey,T)) (hw3 q3)

Lemma. Suppose ¢ is a test of the form
p=1ifT(z)>c
=vifT(z)=c
=0if T(z) <c
Then Eg,¢ = o and Ey,¢T = aEy,T cannot hold simul-
taneously. (consider (¢ —a)(T —c¢) >0)

Lemma. There is at most one test of the form:
(b: 1 lfT ¢ [61,62]
=0ifT € (01702)

=V; lf T = C;
such that Ep,¢ = o, Eg,¢T = aEg,T. (HW3 Q4)
Theorem. Suppose X ~ Do,y () =

U@+, miTi(@)=AO b(2) where (0,7) € © x € is
open. Suppose we want to test Hy : 0 < 6y vs Hy : 0 > 0
at level . In this case, there exists a UMPU of the form
¢=1ifU > K(T)
= u(T) it U = K(T)
=0if U < K(T)
where Eg, »,(¢(U, T)|T) = a a.s.

Remark. The conditional distribution of U given
T = t is an exponential family of the form p(ult) =
A (), € ©.

Remark. Similarly, you can find UMPU in the expo-
nential family pg,(z) = exp{0U(x) + Z?:l niTi(z) —
A(6,7m)}h(z) for these problems:

(11) H,: 0 ¢ (91,92) vs Hi: 0 € (91,92)‘

(111) Hy:0¢ [91,92] vs Hy:0 ¢ [01,92].

(take C = {v : Ep, n,(¥|T) = v a.s., Eg, n(¢|T) = o a.s.})
(iV) H():Q:Qo VSH1 297590

(take C = {¢ : Ep,,(¥|T) = «aas., Ey,,(0U|T) =
aEy,(Y|T) a.s.})

Def (LRT). Suppose X1, -, X, are iid from pg(-), and
you want to test Hy : 6 € ©g vs Hy : § € ©;. The LRT

e . _ Supegeo PQ(Xla'“»Xn)
statistic is A(Xq,---, Xp) = ooy 6, PoXir Xo)"

Remark. In many examples —2log A(Xy,---,X,) has
an asymptotic x? distribution with dim(©y U ©;) —
dim(©g) degrees of freedom.

Thm (Wilks). Suppose A0-A4 hold, MLE is consistent,
© C R* open. Suppose we want to test Hy : § = 6y vs
Hy : 0 # 0y. Then —2log A(Xyq, -+, X5) A Xz.

Wald’s Test. Hy : 0 = 0y vs Hy : 0 # 6y, AO-A4 and
MLE consistent. Thus, v/n(6, — o) A N(0,1(6p)~ 1) un-

der Hy. Reject Hy if |6,, — 6| > \Z/%. For general k,
nl(6o

reject if n(0,, — 00)71(00)(0, — 0) > X%,l—a' Can replace

1(6p) by I1(6,,) and still have this asymptotic distn.

Rao Score Test. Let Up(X;) = 2 logps(X;). We
know EGOUHO(Xi) = O, Va’l“eoUgo(Xi) = 1(90), SO

= Y Us, (X3) ei N(0,1(6)). So reject Hy : 6 = 6

if | 7= 32 Us, (Xi)| > ;(6/0)

M-ESTIMATION
Setup. Xi,---,X, “pon (X, A). Family of criterion

functions mg(z),mp: X = R, 6 € © (e.g. —L(0,X)).

Def (M-estimator). 0, = arg maxgeeo % > mg(a;).
e c.g. mean minimizes = > | (X; — 0)?
e e.g. median minimizes L Y1 | |X; — )|

Def (Z-estimator). 6, such that 3> My(z;) = 0.
e c.g. MLE often solves Y. | Vglogpg(X;) =0

Setup. K C RP compact. C(K) is the space of continu-
ous functions K — R. C(K) is a Banach space with norm
[lw]loo = sup;c |w(t)|, and it is separable (has a count-
able dense subset) Wy, Wa,--- are iid random functions
on C(K) (e.g. W;i(t) = mi(X5)).

Thm. Suppose W is a random function in C(K), K com-
pact. Let u(t) =EW(t), t € K. If E||W||s < 00, then
(i) p is continuous.

(ii) Define M (t) = sup.;_g <= |W(s) — W(t)|. Then
sup,cx EM.(t) > 0ase |0
Thm. W;, Wy, - iid random functions in C(K), K

compact. Let u(t) = EW(t), W,(-) = LS W;(). If

E||W]|s < 00, then |[W,, — p1]]oc = 0 as n — oo.

Thm. {G,},>1 random functions in C(K), K compact.
Suppose ||Gy, — gl|so = 0, g non-random in C(K). Then
(i) If {t, }n>1 € K are random vectors s.t. t,, = t*(€ K),
then G, (t,) & g(t*).



(ii) If ¢ achieves its maximum at a unique t* and
if {tn}n>1 are random vectors maximizing G,, i.e.
Gn(tn) = sup,c e Gn(t), then t,, 5 t*.

(iii) (from Keener, 9.4.3) If K C R and g(¢t) = 0 has a
unique solution ¢*, and if ¢,, are RVs solving G, (¢,) = 0,
then t, 2 t*.

Remark (MLE). X;,---, X, iid py, 0 € O, 90 de-

notes the truth. 0, = argmaxgpeell.(f) — (90)]
1,(9) Y logpe(x;). Here W, = 1,(0) — 1,(6p),
where W;() = log 220 BWi(0) = —I(0o,0) =
— [log ]:f;((;)) foo(z)dp(x), (KL divergence). Have 6y =

arg maxgeo EW(6), by lemma.
Lemma. If Py # Py, then I(6y,0) > 0 and I(6y,6y) = 0.

Thm. © C RP compact.
_ Po(X)

W(0) = log P:O(X)'

for almost all z. py # pe, V8 # 6.

0, 5 6.

Thm. Let © =RP, W(0) =

(i) 0 — po(x) is cts.

(ii) 0 # 00 = po # o,

(

(

Eg,||W|leo < oo where
pe(+) is a continuous function in 6
Then, under P,,

log 2 Suppose

p(X

iii) VK compact, K C 0, Eg, supge g [W(0)] < 00

iv) Ja > 0 s.t. Eg, sup)jg|>q W(0) < o0.

(v) po(z) — 0 as ||0]]2 — oo.

Then én LN 0o under Py,, where én denotes the MLE, if
it exists.

Remark. The weaker condition Eg, supgeg W(f) < oo
is sufficient. Also, ©® C R? can be any open set.

Remark. Let 6, be a global maximizer of W, (). As-
sume A0-A4, and 6, is consistent. Then /n(6,, — ) 4

N(0,1(6p)~") under Py,. (pf: check whp I, () = 0)
Thm. Let W(0) = log ;99((‘))(() Suppose

(i) Eg, supgece W(0) < o0

(ii) @ — pp(x) is upper semi cts

(iii) 0 75 90 = Py 75 Pgo

(iv) ® = U1K, K; compact, increasing,
limy_s oo SUPge e W () = —0 a.s. (w.r.t. pg, Vo).

Then 0, 2 6,. (HW3 Q1)
a) 3l s.t. 00,0, € K; whp. b) Fix § > 0. V0 € B, := K;n {0 €
© : d(0,00) > 6}, 3 neighborhood Vp s.t. Eg, supgey, W(0, X1) <
E¢,W (00, X1) (by ws.c.). c¢) By is compact + WLLN —
SUPge g, Wn(0,X) < Wn(o, X

s.t.

) whp

Prop. Let © be an interval and Z,,(#) a random func s.t.
(i) 0 — Z,(0) is non-decreasing with Z,,(6,,) = 0,(1)

(ii) Z,(0) B Z(6),V0, where Z(#) is non-random.

(iii) @ — Z(0) is strictly increasing with Z(6p) = 0.
Then 6,, & 6,. (HW3 Q2).

CONTIGUITY AND LAN

Def (absolute continuity of measure). Let P and
@ be two probability measures on (X, F). We say P
is absolutely continuous w.r.t @ (noted P <« Q) if
QA)=0 = P(A)=0.

By Radon-Nikodyn theorem, P < Q iff P(A) = [, hdQ
for some non-negative measurable h : (X, F) — (R, B),
ie. dP/dQ = h.

Prop. P < Q iff Q(

Def (contiguity). Let P, and @, be prob measures
on (X, Fn). P, is contiguous to @, (noted P, < Q) if
Qn(A,) -0 = P,(A,) = 0.

Prop. P,<Q, iff T,, Qﬁ 0 = Tnfw\ﬂws T, on X,

A,) =0 = P(A4,) -0, V{4,}.

Def (total variation distance).
sup|P(4) — Q(A)]. If p is a dominating measure
AeF

for P and @, and p = dP/du, ¢ = d@Q/du, then
1P = Qllrv = 5 [ Ip(z) — a(z)|dp.

Also ||P — Q||rv = |P(A) — Q(A)| where A = {p > 1}
Prop. If ||P, — Qullrvy — O then P, <>Q,. Note the
converse is not true (e.g. P, = N(0,1), @, = N(1,1)).

Thm (Portmanteau). Let S be a metric space, with a
Borel g-algebra. Let P,,, P be prob measures on S. Then
TFAE:

(i) nl;ngo J gdP, = [ gdP, Vg bounded continuous.

(ii) hm supfgdP < [gdP, Vg u.s.c. bounded above.
(iii) hm 1nffgdP > [ gdP, Vg Ls.c. bounded below.
(iv) Po(A) = P(A), VA s.t P(DA) =

Remark. Can change [ gdP, to Epng(Xn) and [ gdP

1P = Qllrv =

to Epg(X)' (i)- (iv).
Note Ep = [9(X»)dP, = [ g(X, ))P (dw) =
[ g(z) ) prn[ ], where PXn(A) = P, (X € A)

is the distribution function of X,,.

Note also that X, ;d> X means Ep g(X,,) = Xpg(X) for

all g bdd. cts., or equivalently that the distn. funcs PX»
converge weakly to PX.

Remark. If U is open, 1y is Ls.c, and if K is closed, 1x

is u.s.c. Moreover, for (ii) and (iii), we can equivalently
take g just of this form.

Def. fislsc. at zgif Ve > 035 > 0 : ||z — 2| <
§ = f(a) > f(zo) — ¢, when f(z) < oo (and
f(@') = oo as 2’ — 1z if f(z) = o0). Equivalently,
liminf, ., f(z) > f(zo). Change to f(z') < f(xo) +¢
for u.s.c.

Lemma. Let g be a dominating measure of P and @,
and p = dP/du, ¢ = dQ/du. Then TFAE:

(i) P<< Q@

(ii) P(g=10)=0

(iii) [p/qd@ =1

Def. Let dP/dQ = p/q if ¢ > 0 and = 0, otherwise. In
general [ hdP > [ h%t dQ, with equality if P < Q.

Le Cam’s first lemma. Let (P,,Q,) be prob measures
on (X, F,). The following are equivalent:

(i) Pn 1@y
(i) 5 % i) U along a subsequence, then Pr(U =0) =0

d Pﬂ

(iil) If —> V along a subsequence, then EV = 1.

Remark. If i%" % U, such that Pr(U =
n Pn
EU =1, then P, <p>@Q,.

o dQn 4
Cor. Suppose ar ;)n

Then P, <>Q,.

0) = 0 and
eNo®) guch that p+ "—; =0.

Remark. If 49 i eNwo®) and P, < @Q,, then

p+ % =0.

Le Cam’s third lemma.
(. 58
P(X < x,R < r), then (Xn, o )converges in distribu-

tion under P, and Ep_f(X,,dP,/dQ,) = E{Rf(X,R)},
Vf bounded cts.

Let P, < @,. Assume
) 5) (X, R) with distribution Fx g(z,r) =

n

Corollary.

Assume (Xn,iogdp") ad> (X,2) ~

2
9 (] 52 ) e e -
2

M2+02 =0, then X, —>N( 1+ 012,0%).

0102p, such that

Remark. The same holds with vector-valued R.V. X,,.
Note that in this case, u1 would be a vector, 02 would be
a matrix, and 015 would ve a vector.



Corollary.

jointly:
+o ol o
X, dP, \ 4 N H1 12 1 12 hwa
K, dQ"')?n p2+03 |’ o1z o3 (w4 6)

Definition (LAN). Let © be open. For every 6y, let
P be a prob measure on (X, F,). LAN holds at 6 if
there exists a positive sequence {¢n}n>1 converging to 0,

Under previous corollary, we also have

s.t Vh fixed, logM = hA, — L1(0y) + en(h), for
some I(6g) > 0, s.t.
() Au 5 N(0,1(60))

%0
o D
ii) £, — 0.
(i) P
Remark. LAN — PO" o A>Pg.

ot

Remark. If in IID set-up Ay — A4 hold, LAN holds with

Thm. Suppose LAN holds at 6y, for all § € ©. If

Ta=to Pi N(0,0%(0)), V0o € © then 2(6y) > 1/1(6,) for
0

a.e. 0y (under Lebesgue measure).

Cor. If 0(#) and () are both continuous, then o2(#y) >
1/1(6o), Y6, < ©.

Lemma. Suppose LAN holds at 6y, V6y € ©. Let T,, be

s.t. T%fo —> N(O o2(6o)), and liminf,, o0 Pg o (T <
Then o (90) > (2}0).
Theorem. Suppose LAN holds at 6y. Let T, be a

sequence of rv’s, such that Tni>Gh under Pyl . Vh

fixed. Then G < F(Z,U) where Z ~ N(h,1(6p)71),
U ~U(0,1). Also Z and U are independent, and F is a
non-random measurable function free of h.

Theorem. Suppose LAN holds at 3. Let %, be a
sequence of asymptotically level a tests for 8 = 6y vs.

0 > 6y ie. limsup,_,. Eg,¥n < a. Then Vh > 0,
nhﬁn;o sup Egy+ne,¥n <1 —®(21—q — h/\/I1(00)).

Pf: On subsequence, limsup Eg,+nr,, qﬁn = lim E90+hrnk ¢ny- On

d
Loy 4 (V,R) by .

Py, tightness.

further subsequence, (¢n,

d
L On —
Pog+hrn

N(th(60)71)7U ~ U(Ovl) Also E@o-{»h'rn(bn - EF(U7 V) (UI)7
so Ep—oF(Z,U) < a. Now compare F(U,V) to MP test O

V(h) (le Cam). By thm7 V(h) = F(Z,U), Z ~

Remark. A test that achieves this bound is locally
asymptotically optimal.

Lemma. (i) Given a real-valued r.v X, there is a non-

random measurable function F such that X < F (),
U ~7U(0,1).

(ii) Given real-valued r.v.s (X,Y’), there is non-random
measurable F' s.t. (X,Y) < (X,F(X,U)),and X L U.

PROJECTIONS
Def (Projection). Let (2, F, P) be a prob space. Let
£? be the vector space of all r.v.’s X in this space such
that EX? < oo. X is the the projection of X € £2 onto
the sub-vector space S if
i) Xes
(i) E(X — X)2 <E(X - Y)%, VY € S.

Prop. (i) X € S is a projection iff E(X — X)Y =0,
VY € S.
(ii) Projection, if it exists, is unique.

(i) If 1 € S, then Var(T) < Var(T) and E(T") = E(T)

Def. S is closed if {Y,}n>1 € S and E(Y,, — Y)?
implies Y € S.

— 0

Prop. If S is closed, then a projection exists.

Remark. Let S be the space of all X such that EX? < o
and X is G-measurable, where G C F. Then X = E[X|G].

Lemma (H&jek Projection). Let Xi,..., X, be in-
dependent, and let S be the set of all rv’s of the form
>0 95(X;) where Eg;(X;)* < oo (equivalently those
of the form Y | Y;, where EY2 < o0, Y; is Xj-
measurable).

If T € £, its projection is T = Y7 E(T|X;)—(n—1)ET.

Remark. In general E[T|X;] will depend on j. How-
ever, if T'is symmetric in (X7, -, X,,), and (X3, -+, X,)
are independent, then E[T'|X;] does not depend on j, i.e.

E[T|X;] = g(Xj), for some function g free of j.

Thm. Let (Q,,F,, P.) be a prob space for each n, and
let S,, with 1 € S,,, be a subspace of £2 (R, Fn, Py) for
each n. Suppose T, € £? has a projection Tn, such that
Var(']:,) 1. Th T,—ET, T, —ET), c? (P
Var(T) n——>>oo en \/Var (Tn) \/Var(’fn) n—00

Setup (U-Stats). Suppose (X1, -, X,,) are iid cts rvs
on X. Let h : X* — R be a measurable function. Want
to estimate 6 := Eh(Xy,- -, X), and h(Xy, -+, Xj) is

an unbiased estimator.
Define U := E[h(Xy, -, Xg)[Xq), -+, X)) Then
EU = 0 and Var(U) < Var(h(X1,---,Xg)) as U is a
projection (or by Rao-Blackwell).

WLOG assume h is symmetric in

so that U = @Zl§l1<m<lk§n h(Xlla"'
1 .

[ 2el()] XD

Prop. (i) EU = 6.

its arguments,
) Xlk) =

(i) Var(U) = ¢, (5)(229)¢e./(7), where
& = Cov(h(Xi, -, sz) X, ,X;.)), where
i, iy 0 {j, - gkt =c
n—k 2

Remark. If & # 0, Var(U) ~ k((’ij)l)fl ~ %fl, since
(:f) N—forrﬁxed n — 00.
Thm. If En2(Xy, -, X)) < oo, then /n(Uy, — 0) >

n— o0

N(0,k2&;), provided & # 0. Moreover:
e The Hajek projection of U,, — 6 is U,, = %Z?:l 9(X5),

where g(z) = E[h(z, X2, -, Xj) — 6].

e Var(g(Xy)) = &.

Setup (2-sample U stats). Suppose X1,---, X, g

and Yy,---, Y, ¥ G.

L — Ly B(X; Y5, wh :
et Umn = oy Lie(m)]ae((z)] M3 Yo), where

X" x YS — Also assume h is symmetric be-

tween X variables with Y fixed, and viceversa, i.e.
WXy, Ya)) = M(X;,Y;). We assume N =m +n — 0o
st. ¥ — A x — 1—A, for some A € (0,1). Let
0 = ER(Xi,Y).
Thm. If Eh%(X;,Y;) < oo, then
VNUpn — 0) 4 N(O 7751,0 + %50,1)7 where §10 =
Cov(h(X;,Yj), h(Xi,Yy)), where [ini'| =1,jNj'| = 0.
e The Héjek projection of Uy, ,, — 0 is
Unm, n = it 910(X) + 5 3701 901(Yj), where
glO ) Eh(an27"'7XT7Y17"'aYS>_9a
gOl( ) Eh’(Xla"'vX7'5y7Y27"'7Y9)_0'
e Var(g1,0(X1)) = &1,0, Var(go,1(¥1)) = &0

DISTRIBUTIONAL RESULTS

I'(a)D

e B(a,) = r(<63+(§>)
eI'(a+1)=al(a)
e '(k)=(k—1), for ke Z+.
eI = V7

o If a, — a, then (14 %=)" — e




o If X >0, then E[X] = [[* P(X > z)dx

e Suppose X; ~ N(0,02):

- B(Y X)) = nf

- EXCX?) = no? + nb?

- B(XCX)?) =n?0? + n?0?

S (DS =YX - X) ~o%
o X g
/75'2/n n—1
1 1
- E(zxg) = 72(n—2)

- MLE is (X, L (X5 - X)?)
g (@ —T)?

e Def (Sample variance). s? :=

o Y(xi —7)* =Y af —nz’

o Y(Xi—p)? =n(X —p)?+ (X - X)?

o Var(y_, X;) = >, Var(X;) + 23, Cov(Xy, X;)
¢ = Gammala = 5,6 = 1

e Exp(A) = Gamma(a=1,8=\)

o If U ~ U(0,1), then —log(U) = Exp(1)

o If X; “U(0,0), then n(1 —

ular, X(n )—>9.

X(”)) = Ezp(1). In partic-

o If X; X Bin(1,0/n), then > | X; 4 Poisson(0).

o If X,, ~ Bin(n,p,) and np,, — A, then X, A Pois(\)

o If X ~ Py(A) and Y ~ Pp(p) independently, then
X+Y ~P(A+p)

o If X ~ Gamma(a,0) and Y ~ Gamma(B,0) in-
dependently, then X +Y ~ Gamma(a + 3,0), and
XLH, ~ Beta(a, ).

o If X ~ Gamma(a, B), then 0 X ~ Gamma(a, §/0).

o If X1, X, X N (0, 1)

iid

o If Xy, -+, X, ¥ N(6,1), T = ¥ X;, then
i\ Im L -
(X1, XuT=t)~N(| ... |, _% 1-1
t/n

o If X ~ Pois()\), Y ~ Pois(u) independently, then
XH{X +Y =t} ~ Bin(t, 335)-

e MVN (Multi-variate normal). If X ~ N(u,X), then
-~ (%) = (2n] det )2 exp(—(x — )T (x - ).

_ Eeth — evtu+%vt2v
e In particular, in the bivariate case with correlation p,

— 1
f(l',y) - 2o x Oy /1—,02 X

exp (—grrpey [(5522)° — 2p( 5 (520 + (4520 7])

e In the standardized case with correlation p, (i.e. X, Y ~

N(0,1), EXY = p), we have Y = pX 4+ +/1 — p?Z, where
Z 1 X.

e IfU~ N(0,1) and V ~ X;Q; independently, then
U

Y~

VV/p P

o IfU ~ X% and V ~ Xg independently, then

U
V;p Fpq

Order Statistics. If X, -, X %1 f(x), then

i fX<,-)( z) = G- 1)7'“n J)rf( z)F(z )] Y1 — F(x))"I

o Fx, () =3 () F@)f (1 - Fa)"*

® fxiyx) (U0) = 5= 1G— = = % (W) f(v)x
F(u)=YF(v) = F(u)! 17 (1-F(v))" ™, foru < v,i < j
® fxiy X (X) = 0lf(z1) - f(20), for 1 <<y

e If Uy, , U, U0, 1], then Uy ~ Beta(k,n —k + 1)
e The condltlonal distribution of X ;)| X ;) =t is that of
the ith order statistic from j — 1 samples of the original
distribution truncated at t.

o (Xi|X(m) = 1)L L5, +2=1U(0, 1) (HW2 Q4)

e Order statistics are independent of rank statistics

Propn (Asymptotic distribution of ordered statis-
tics). If Xi,..,X, are iid from continuous strictly
positive density f, then, for p € (0,1),

Tl D (1-p)
V(X () — F7HP)) HN(07W>

e If Xi,---,X, have continuous cdf F, then
F(Xy), - ,F(X,) ~U0,1], and if Uy,--- ,U, ~ U[0, 1],
then F~L(Uy), -+, F~YU,) £ X1, , Xn.

iid

o If Xy, X, ~ N(0 o?) and 6 ~ N(u,72), then
- 9|X ~ Nttt X ot )

- X ~ N(ul,0%L, + 72117) (marginally) (HW3 g5)

o If Xy,---,X,, ~B(1,p) and p ~ B(y/n/2,y/n/2), then
0(X) = ZX%W is the unique Bayes estimator. It has
constant risk TN’ so it’s unique minimax and L.F.

e MLE for Normal, Poisson, and Bernoulli is X. For
uniform it is X,).

e Cauchy Distribution verifies conditions A3 and A4.

e If X is negative binomial (r,p), and Y = 2pX, then
Yy 4 X3, as p — 0.

o If X ~ Gamma(a,p) and Y ~ Poisson(zf), then
P(X <z)=P > a).

o If X ~ Bin(m,p), Y ~ Bin(n,p) independently, then

P(X =KX +Y =1) = (152"(*">

) (HyperGeometric)

INEQUALITIES
Triangles |la] ~ ly| < llo-+ vl < i« + o
 1£llo = (S 1417dn)* or [|X]l, = (E|X[P)? are norms
Holder’s: Suppose p,q € [1,00] s.t. % % = 1. Then
1£llx < 11/1lsllgll,- In particular,

o [If@)g(@)de < ([1f(@)[Pdz)" ([ ]g(x
e E|XY| < (E|X|P)Y/P(E|Y|9)Y/a

Q=

)|9da)

Cauchy-Schwarz. Setting p = ¢ = 2 in Holder’s,

o E|XY| < VEXZEY?
e Cov(X,Y)? < Var(X

Pinsker’s: ||P — Q||rv <

War(Y), with =if Y =aX +b
2Dk L(P|Q).

Markov’s: P(|X| > M) < %
Jensen’s: Under UNBIASEDNESS.

Cosh. cosh(z) = 4" < ¢#7/2

Log. log(l +x) <z — % if x > 0 (Taylor expansion)

o log(1+ )<x—2 : if o> 05

elog(l+xz)>a— % +%- Ciffx € [0,0.45...] (< elsewhere)

elog(l4+z)>a— 72 5 Ciff o € [—0.43,0] (< elsewhere)
MISCELLANEOUS

Ve (2)".

Sterling’s Approx. n! ~

O notation.
o f(x) = o(g(x)) as = — oo iff L2l

g9(z)
o X, = op(ay) if Xp/an Lo.
o f(z) = O(g(x)) as  — oo iff Jz,, M such that
|f(z)| < Mg(x) for all x > xo.
o X,, = Oplay) if X,,/ay is stochastically bounded, i.e.
Ve >0 3M, N s.t. P(|X,| > Ma,) < ¢ for all n > N.

— 0 as x — 0.

Thm (joint convergence).
e Suppose X, & X and Y, & Y. Then (X0, Yn) LN
(X,Y).



e Suppose X, D, X and Y, EEN Y, and X, is independent
of Y, for all n. Then (X,,,Y,) 2 (X,Y).

o (X, V) 5 (X,Y) iff Vhy, ks € R kX, + koY, 5
X + kY. X, S Xff (t,X,,) 5 (¢, X), Vt € R,

Thm (Cts. Mapping). If f is cts. and X,, — X, then
f(X,) = f(X) (holds for convergence a.s., in P or in D)

Thm (Continuous Mapping). Let g be a function,
such that the set of discontinuity points has prob. mea-
sure 0. Then

e X, — X implies g(X,) — ¢g(X) for convergence in
distribution, prob. and a.s. respectively.

Def (L, convergence). X, by x if E\X,-XP—0
eFors>r>1,X, %X = X, X (Jensen’s)
eForp>1,X, 83X — XA X

o If X, is Ul and X 2 X, then X,, 3 X

o If X,, 28 X, then EX? — EXP (reverse A inequality)

Uniform Integrability. A sequence (X,,),>1 is UT if
Ve > 0,dM > 0 s.t. sup,>q E|X,|[(x,|>0m) < €

o If X, 2 X and sup,,>1 E[| X5 "] < oo for some § > 0,
then EX,, — EX.

Tightness. We say {V,},>1 is tight if given ¢ > 0,
JK. < oo such that P(V, € [-K.,K.]) >1—¢,Vn > 1.
Alternatively, sup, ~, P(|V,,| > M) — 0 as M — occ.
Also written as V,, = O,(1) or ‘bounded in probability’.
e Marginal tightness implies joint tightness. This in turn
implies convergence in distribution along a subsequence.
o If X,, 4 X, then {X, },>1 is tight.

o If {X, }n>1 is UI, then {X,},>1 is tight.

Def (X,)n>1 is bounded in L,
sup,, > E[|X,[P] < oo.

e For p > 1, this implies tightness.

e For p > 1, this implies Ul (Counterexample for p = 1;
X, = nl(0,1/n]). Conversely, UI — bounded in L;
(but NOT bounded in L, for p > 1).

for p > 1 if

Prohorov’s thm. If V,, is tight, there exists a subse-
quence along which it converges in distribution.

Lagrange Multipliers. Let f RY - R, h =
(hi,--+  he)T, by R = R, f,h € CL. Let L(x,\) =
f(z) = (A h(x)). If (a*, A*) s.t

i) L(z*, \*) = max,epe L(z, \*)

ii) h(z*) =0

Then z* maximizes f(z) subject to h(x) = 0. Therefore:
1. Maximize £(z, A) in z to find z*(X).

2. Find X* s.t. a*(\*) satisfies h(z*) = 0.

KKT. Consider max,cga f(x) subject to h(z) = 0
and g(r) < 0, ¢ = (91,7 ,9m)7 9 < 0. Let
L m = F(@) — (ng@) — (uh(@). I o* s a
solution, IN*, u* s.t.

Stationarity: VL(x*, A*, u*) =0

Primal feasibility: g;(z*) <0, h;(z*) =0

Dual feasibility: p} > 0
Complementary slackness: pfg;(x

KKT (sufficiency). Consider:
(%) mingcpa f(z) s.t. g(x) <0 and h(z) =

Let Lz, A, p) = f(x) + (X h(@)) + (1, (2 >

Suppose I(z*, A*, u*) s.t. g(z*) <0, h( ) =10, u* >0,
(u*, g(x*)) = 0 and L(x*, \*, u*) = mingepa L(z, A*, p*).
Then x* solves (x). Therefore:

1. Minimize L£(x, A, 1) in z to find z*(\, p).

2. Maximize L(z*(\, 1), A, p) over p > 0 to find p*(N).
3. Find A* s.t. h(z* (N5, p*(A*))) = 0.

4. Check (u*,g(z*)) = 0 (automatic for ‘nice’ convex
problems).

KKT (inequalities only). Consider:

(¥) mingega f(x) s.t. g(x) <0.

Let L(x, p) = f(x) + (p, g(x))-

Suppose J(z*, pu*) s.t. g(z*) <0, u* >0, (u*, g(z*)) =0
and L(x*, p*) = mingcpa L(x, p*).

Then z* solves (x). Therefore:

1. Minimize L£(z,p) in x to find z*(u).

2. Maximize L£(x*(u), 1) over p > 0 to find p*.
3. Check (u*, g(a*(u*))) = 0.

Def (compactness). A set K is compact if every open
cover has a finite subcover.
Usually: closed and bounded.

Def (Characteristic function). ¢x (u) = Ee*(“X)

Cumulant generating function: log(Fe!X)

o If it exists, it is convex and infinitely differentiable.
Weighted loss. If L(g(6),5(X)) = w(0)(6(X) — g(0))?,
the Bayes estimator is dp(X) = %.

An admissible estimator w.r.t sq. err. is also admissible
w.r.t. weighted loss.

Absolute error loss. If L(g(0),6(X)) = 16(X)
the Bayes estimator is do(X) = median(6]X).

0-1 loss. If L(g(0),6(X)) = I(6(X) # ¢(6)), the Bayes
estimator is do(X) = mode(9|X).

—9(0)%,

Scaled/shifted Bayes/minimax. If 6(X) is

Bayes/minimax for ¢g(#), then ad(X
for ag(6) + b.

)+b is Bayes/minimax

e Under sq. err. loss, aX + b is inadmissible for £ X if:
- a > 1 (dominated by X)
- a < 0 (dominated by ——t-)
- a=1,b# 0 (dominated by X)

Cochran’s Thm. Suppose Z ~ N(0,X) and X2 = .

Then ZTZ ~ X?r(z) = X?«(zy

Convexity characterizations. f is convex iff
fOz+ (1= Ny) < Af(z)+ (1 =N f(y), Va,y, VA € (0,1)
iff f(9€2) f(x1) < f(x3)—f(x2) Vo, < 39 < T3

r3—T2

iff f(IZ) f(Il) < f(m3) f(z1)

To2—T1 r3—T1

Vxl < To <3

Lyapunov CLT. Suppose X7, X5, -+ are independent
with means y; and variances ZZQ Let s2 = Y1 | o?. If, for
some 0 > 0, lim,,_, S%% S EIX: — >0 =0 (Lya-

(X, — i) % N(0,1).
ZZ 0( )xlyn Z

Sherman-Morrison (Woodbury) formula.

punov’s condition). Then X 37

Binomial theorem. (z +y)" =

(A u®) ™t = A7 = A
U stats. h(z,y) = (x y)? = U, = ﬁZ(XZ_YP

RANDOM FACTS FROM EXERCISES
oYl i?=1in(n+1)(2n+1)
e Let a > 0. Then z*log(xz) — 0 as x — 0T,
elet P(X;=+1)=15,=3" X,
Then Ee*S» = (cosh(A))™ and P(|S,| > nt) < 2e~"t*/2
e Suppose Pn,/i(yi = yz) = %(@ exp(% Z1§i<]§n yiyj)~
Then Z2l8) 5 exp(—2)(1 - §)~2 (HW4 Q2)
Also /nY Pi N(0, 15) (HW4 Q3)

.8

e Suppose X ~ py, Og C ©1, dp(X) is unique UMVUE
for 6 € Oy, and O also has a UMVUE, and 6y, ©; have
the same null sets. If dg is unbiased for ©1, then g is
also a UMVUE for 0 € ©; (midterm 1).

TAYLORkSERIES )
S A it

e log(l+xz)=>7,(— )’”‘“ﬁc r— % 4. forfz[ <1
—1)k

esin(z) =) ;0 0(2ki1),m2k+1 —x—f-l- & st

e cos(z) = Zko(%)“ﬁkfl 2?+%+...



